Example #1
0
def run_cli(options: RunOptions) -> None:
    try:
        print(
            """

                        ▄▄▄▓▓▓▓
                   ╓▓▓▓▓▓▓█▓▓▓▓▓
              ,▄▄▄m▀▀▀'  ,▓▓▓▀▓▓▄                           ▓▓▓  ▓▓▌
            ▄▓▓▓▀'      ▄▓▓▀  ▓▓▓      ▄▄     ▄▄ ,▄▄ ▄▄▄▄   ,▄▄ ▄▓▓▌▄ ▄▄▄    ,▄▄
          ▄▓▓▓▀        ▄▓▓▀   ▐▓▓▌     ▓▓▌   ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌  ╒▓▓▌
        ▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓      ▓▀      ▓▓▌   ▐▓▓ ▐▓▓    ▓▓▓ ▓▓▓  ▓▓▌   ▐▓▓▄ ▓▓▌
        ▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄     ▓▓      ▓▓▌   ▐▓▓ ▐▓▓    ▓▓▓ ▓▓▓  ▓▓▌    ▐▓▓▐▓▓
          ^█▓▓▓        ▀▓▓▄   ▐▓▓▌     ▓▓▓▓▄▓▓▓▓ ▐▓▓    ▓▓▓ ▓▓▓  ▓▓▓▄    ▓▓▓▓`
            '▀▓▓▓▄      ^▓▓▓  ▓▓▓       └▀▀▀▀ ▀▀ ^▀▀    `▀▀ `▀▀   '▀▀    ▐▓▓▌
               ▀▀▀▀▓▄▄▄   ▓▓▓▓▓▓,                                      ▓▓▓▓▀
                   `▀█▓▓▓▓▓▓▓▓▓▌
                        ¬`▀▀▀█▓

        """
        )
    except Exception:
        print("\n\n\tUnity Technologies\n")
    print(get_version_string())

    if options.debug:
        log_level = logging_util.DEBUG
    else:
        log_level = logging_util.INFO
        # disable noisy warnings from tensorflow
        tf_utils.set_warnings_enabled(False)

    logging_util.set_log_level(log_level)

    logger.debug("Configuration for this run:")
    logger.debug(json.dumps(options._asdict(), indent=4))

    # Options deprecation warnings
    if options.load_model:
        logger.warning(
            "The --load option has been deprecated. Please use the --resume option instead."
        )
    if options.train_model:
        logger.warning(
            "The --train option has been deprecated. Train mode is now the default. Use "
            "--inference to run in inference mode."
        )

    run_seed = options.seed
    if options.cpu:
        os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

    # Add some timer metadata
    add_timer_metadata("mlagents_version", mlagents.trainers.__version__)
    add_timer_metadata("mlagents_envs_version", mlagents_envs.__version__)
    add_timer_metadata("communication_protocol_version", UnityEnvironment.API_VERSION)
    add_timer_metadata("tensorflow_version", tf_utils.tf.__version__)

    if options.seed == -1:
        run_seed = np.random.randint(0, 10000)
    run_training(run_seed, options)
Example #2
0
def run_cli(options: RunOptions) -> None:
    try:
        print(
            """
            ┐  ╖
        ╓╖╬│╡  ││╬╖╖
    ╓╖╬│││││┘  ╬│││││╬╖
 ╖╬│││││╬╜        ╙╬│││││╖╖                               ╗╗╗
 ╬╬╬╬╖││╦╖        ╖╬││╗╣╣╣╬      ╟╣╣╬    ╟╣╣╣             ╜╜╜  ╟╣╣
 ╬╬╬╬╬╬╬╬╖│╬╖╖╓╬╪│╓╣╣╣╣╣╣╣╬      ╟╣╣╬    ╟╣╣╣ ╒╣╣╖╗╣╣╣╗   ╣╣╣ ╣╣╣╣╣╣ ╟╣╣╖   ╣╣╣
 ╬╬╬╬┐  ╙╬╬╬╬│╓╣╣╣╝╜  ╫╣╣╣╬      ╟╣╣╬    ╟╣╣╣ ╟╣╣╣╙ ╙╣╣╣  ╣╣╣ ╙╟╣╣╜╙  ╫╣╣  ╟╣╣
 ╬╬╬╬┐     ╙╬╬╣╣      ╫╣╣╣╬      ╟╣╣╬    ╟╣╣╣ ╟╣╣╬   ╣╣╣  ╣╣╣  ╟╣╣     ╣╣╣┌╣╣╜
 ╬╬╬╜       ╬╬╣╣      ╙╝╣╣╬      ╙╣╣╣╗╖╓╗╣╣╣╜ ╟╣╣╬   ╣╣╣  ╣╣╣  ╟╣╣╦╓    ╣╣╣╣╣
 ╙   ╓╦╖    ╬╬╣╣   ╓╗╗╖            ╙╝╣╣╣╣╝╜   ╘╝╝╜   ╝╝╝  ╝╝╝   ╙╣╣╣    ╟╣╣╣
   ╩╬╬╬╬╬╬╦╦╬╬╣╣╗╣╣╣╣╣╣╣╝                                             ╫╣╣╣╣
      ╙╬╬╬╬╬╬╬╣╣╣╣╣╣╝╜
          ╙╬╬╬╣╣╣╜
             ╙
        """
        )
    except Exception:
        print("\n\n\tUnity Technologies\n")
    print(get_version_string())

    if options.debug:
        log_level = logging_util.DEBUG
    else:
        log_level = logging_util.INFO

    logging_util.set_log_level(log_level)

    logger.debug("Configuration for this run:")
    logger.debug(json.dumps(options.as_dict(), indent=4))

    # Options deprecation warnings
    if options.checkpoint_settings.load_model:
        logger.warning(
            "The --load option has been deprecated. Please use the --resume option instead."
        )
    if options.checkpoint_settings.train_model:
        logger.warning(
            "The --train option has been deprecated. Train mode is now the default. Use "
            "--inference to run in inference mode."
        )

    run_seed = options.env_settings.seed
    num_areas = options.env_settings.num_areas

    # Add some timer metadata
    add_timer_metadata("mlagents_version", mlagents.trainers.__version__)
    add_timer_metadata("mlagents_envs_version", mlagents_envs.__version__)
    add_timer_metadata("communication_protocol_version", UnityEnvironment.API_VERSION)
    add_timer_metadata("pytorch_version", torch_utils.torch.__version__)
    add_timer_metadata("numpy_version", np.__version__)

    if options.env_settings.seed == -1:
        run_seed = np.random.randint(0, 10000)
        logger.debug(f"run_seed set to {run_seed}")
    run_training(run_seed, options, num_areas)
Example #3
0
def run_cli(options: RunOptions) -> None:
    try:
        print(
            """

                        ▄▄▄▓▓▓▓
                   ╓▓▓▓▓▓▓█▓▓▓▓▓
              ,▄▄▄m▀▀▀'  ,▓▓▓▀▓▓▄                           ▓▓▓  ▓▓▌
            ▄▓▓▓▀'      ▄▓▓▀  ▓▓▓      ▄▄     ▄▄ ,▄▄ ▄▄▄▄   ,▄▄ ▄▓▓▌▄ ▄▄▄    ,▄▄
          ▄▓▓▓▀        ▄▓▓▀   ▐▓▓▌     ▓▓▌   ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌  ╒▓▓▌
        ▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓      ▓▀      ▓▓▌   ▐▓▓ ▐▓▓    ▓▓▓ ▓▓▓  ▓▓▌   ▐▓▓▄ ▓▓▌
        ▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄     ▓▓      ▓▓▌   ▐▓▓ ▐▓▓    ▓▓▓ ▓▓▓  ▓▓▌    ▐▓▓▐▓▓
          ^█▓▓▓        ▀▓▓▄   ▐▓▓▌     ▓▓▓▓▄▓▓▓▓ ▐▓▓    ▓▓▓ ▓▓▓  ▓▓▓▄    ▓▓▓▓`
            '▀▓▓▓▄      ^▓▓▓  ▓▓▓       └▀▀▀▀ ▀▀ ^▀▀    `▀▀ `▀▀   '▀▀    ▐▓▓▌
               ▀▀▀▀▓▄▄▄   ▓▓▓▓▓▓,                                      ▓▓▓▓▀
                   `▀█▓▓▓▓▓▓▓▓▓▌
                        ¬`▀▀▀█▓

        """
        )
    except Exception:
        print("\n\n\tUnity Technologies\n")
    print(get_version_string())

    if options.debug:
        log_level = logging_util.DEBUG
    else:
        log_level = logging_util.INFO

    logging_util.set_log_level(log_level)

    logger.debug("Configuration for this run:")
    logger.debug(json.dumps(options.as_dict(), indent=4))

    # Options deprecation warnings
    if options.checkpoint_settings.load_model:
        logger.warning(
            "The --load option has been deprecated. Please use the --resume option instead."
        )
    if options.checkpoint_settings.train_model:
        logger.warning(
            "The --train option has been deprecated. Train mode is now the default. Use "
            "--inference to run in inference mode."
        )

    run_seed = options.env_settings.seed

    # Add some timer metadata
    add_timer_metadata("mlagents_version", mlagents.trainers.__version__)
    add_timer_metadata("mlagents_envs_version", mlagents_envs.__version__)
    add_timer_metadata("communication_protocol_version", UnityEnvironment.API_VERSION)
    add_timer_metadata("pytorch_version", torch_utils.torch.__version__)
    add_timer_metadata("numpy_version", np.__version__)

    if options.env_settings.seed == -1:
        run_seed = np.random.randint(0, 10000)
        logger.info(f"run_seed set to {run_seed}")
    run_training(run_seed, options)
Example #4
0
def run_cli(options: RunOptions) -> None:
    try:
        print("Test")
        print("""

                        ▄▄▄▓▓▓▓
                   ╓▓▓▓▓▓▓█▓▓▓▓▓
              ,▄▄▄m▀▀▀'  ,▓▓▓▀▓▓▄                           ▓▓▓  ▓▓▌
            ▄▓▓▓▀'      ▄▓▓▀  ▓▓▓      ▄▄     ▄▄ ,▄▄ ▄▄▄▄   ,▄▄ ▄▓▓▌▄ ▄▄▄    ,▄▄
          ▄▓▓▓▀        ▄▓▓▀   ▐▓▓▌     ▓▓▌   ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌  ╒▓▓▌
        ▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓      ▓▀      ▓▓▌   ▐▓▓ ▐▓▓    ▓▓▓ ▓▓▓  ▓▓▌   ▐▓▓▄ ▓▓▌
        ▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄     ▓▓      ▓▓▌   ▐▓▓ ▐▓▓    ▓▓▓ ▓▓▓  ▓▓▌    ▐▓▓▐▓▓
          ^█▓▓▓        ▀▓▓▄   ▐▓▓▌     ▓▓▓▓▄▓▓▓▓ ▐▓▓    ▓▓▓ ▓▓▓  ▓▓▓▄    ▓▓▓▓`
            '▀▓▓▓▄      ^▓▓▓  ▓▓▓       └▀▀▀▀ ▀▀ ^▀▀    `▀▀ `▀▀   '▀▀    ▐▓▓▌
               ▀▀▀▀▓▄▄▄   ▓▓▓▓▓▓,                                      ▓▓▓▓▀
                   `▀█▓▓▓▓▓▓▓▓▓▌
                        ¬`▀▀▀█▓

        """)
    except Exception:
        print("\n\n\tUnity Technologies\n")
    print(get_version_string())

    if options.debug:
        log_level = logging_util.DEBUG
    else:
        log_level = logging_util.INFO
        # disable noisy warnings from tensorflow
        tf_utils.set_warnings_enabled(False)

    logging_util.set_log_level(log_level)

    logger.debug("Configuration for this run:")
    logger.debug(json.dumps(options._asdict(), indent=4))

    run_seed = options.seed
    if options.cpu:
        os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

    if options.seed == -1:
        run_seed = np.random.randint(0, 10000)
    run_training(run_seed, options)
def worker(
    parent_conn: Connection,
    step_queue: Queue,
    pickled_env_factory: str,
    worker_id: int,
    engine_configuration: EngineConfig,
    log_level: int = logging_util.INFO,
) -> None:
    env_factory: Callable[
        [int, List[SideChannel]], UnityEnvironment
    ] = cloudpickle.loads(pickled_env_factory)
    env_parameters = EnvironmentParametersChannel()
    engine_configuration_channel = EngineConfigurationChannel()
    engine_configuration_channel.set_configuration(engine_configuration)
    stats_channel = StatsSideChannel()
    env: BaseEnv = None
    # Set log level. On some platforms, the logger isn't common with the
    # main process, so we need to set it again.
    logging_util.set_log_level(log_level)

    def _send_response(cmd_name: EnvironmentCommand, payload: Any) -> None:
        parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload))

    def _generate_all_results() -> AllStepResult:
        all_step_result: AllStepResult = {}
        for brain_name in env.behavior_specs:
            all_step_result[brain_name] = env.get_steps(brain_name)
        return all_step_result

    try:
        env = env_factory(
            worker_id, [env_parameters, engine_configuration_channel, stats_channel]
        )
        while True:
            req: EnvironmentRequest = parent_conn.recv()
            if req.cmd == EnvironmentCommand.STEP:
                all_action_info = req.payload
                for brain_name, action_info in all_action_info.items():
                    if len(action_info.action) != 0:
                        env.set_actions(brain_name, action_info.action)
                env.step()
                all_step_result = _generate_all_results()
                # The timers in this process are independent from all the processes and the "main" process
                # So after we send back the root timer, we can safely clear them.
                # Note that we could randomly return timers a fraction of the time if we wanted to reduce
                # the data transferred.
                # TODO get gauges from the workers and merge them in the main process too.
                env_stats = stats_channel.get_and_reset_stats()
                step_response = StepResponse(
                    all_step_result, get_timer_root(), env_stats
                )
                step_queue.put(
                    EnvironmentResponse(
                        EnvironmentCommand.STEP, worker_id, step_response
                    )
                )
                reset_timers()
            elif req.cmd == EnvironmentCommand.BEHAVIOR_SPECS:
                _send_response(EnvironmentCommand.BEHAVIOR_SPECS, env.behavior_specs)
            elif req.cmd == EnvironmentCommand.ENVIRONMENT_PARAMETERS:
                for k, v in req.payload.items():
                    if isinstance(v, ParameterRandomizationSettings):
                        v.apply(k, env_parameters)
            elif req.cmd == EnvironmentCommand.RESET:
                env.reset()
                all_step_result = _generate_all_results()
                _send_response(EnvironmentCommand.RESET, all_step_result)
            elif req.cmd == EnvironmentCommand.CLOSE:
                break
    except (
        KeyboardInterrupt,
        UnityCommunicationException,
        UnityTimeOutException,
        UnityEnvironmentException,
        UnityCommunicatorStoppedException,
    ) as ex:
        logger.info(f"UnityEnvironment worker {worker_id}: environment stopping.")
        step_queue.put(
            EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex)
        )
        _send_response(EnvironmentCommand.ENV_EXITED, ex)
    finally:
        # If this worker has put an item in the step queue that hasn't been processed by the EnvManager, the process
        # will hang until the item is processed. We avoid this behavior by using Queue.cancel_join_thread()
        # See https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue.cancel_join_thread for
        # more info.
        logger.debug(f"UnityEnvironment worker {worker_id} closing.")
        step_queue.cancel_join_thread()
        step_queue.close()
        if env is not None:
            env.close()
        logger.debug(f"UnityEnvironment worker {worker_id} done.")
Example #6
0
from mlagents_envs.base_env import BaseEnv
from mlagents_envs.base_env import DecisionSteps, TerminalSteps
from mlagents_envs import logging_util


class UnityGymException(error.Error):
    """
    Any error related to the gym wrapper of ml-agents.
    """

    pass


logger = logging_util.get_logger(__name__)
logging_util.set_log_level(logging_util.INFO)

GymStepResult = Tuple[np.ndarray, float, bool, Dict]


class UnityToGymWrapper(gym.Env):
    """
    Provides Gym wrapper for Unity Learning Environments.
    """

    def __init__(
        self,
        unity_env: BaseEnv,
        use_visual: bool = False,
        uint8_visual: bool = False,
        flatten_branched: bool = False,
Example #7
0
def worker(
    parent_conn: Connection,
    step_queue: Queue,
    pickled_env_factory: str,
    worker_id: int,
    run_options: RunOptions,
    log_level: int = logging_util.INFO,
) -> None:
    env_factory: Callable[
        [int, List[SideChannel]], UnityEnvironment
    ] = cloudpickle.loads(restricted_loads(pickled_env_factory))
    env_parameters = EnvironmentParametersChannel()

    engine_config = EngineConfig(
        width=run_options.engine_settings.width,
        height=run_options.engine_settings.height,
        quality_level=run_options.engine_settings.quality_level,
        time_scale=run_options.engine_settings.time_scale,
        target_frame_rate=run_options.engine_settings.target_frame_rate,
        capture_frame_rate=run_options.engine_settings.capture_frame_rate,
    )
    engine_configuration_channel = EngineConfigurationChannel()
    engine_configuration_channel.set_configuration(engine_config)

    stats_channel = StatsSideChannel()
    training_analytics_channel: Optional[TrainingAnalyticsSideChannel] = None
    if worker_id == 0:
        training_analytics_channel = TrainingAnalyticsSideChannel()
    env: UnityEnvironment = None
    # Set log level. On some platforms, the logger isn't common with the
    # main process, so we need to set it again.
    logging_util.set_log_level(log_level)

    def _send_response(cmd_name: EnvironmentCommand, payload: Any) -> None:
        parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload))

    def _generate_all_results() -> AllStepResult:
        all_step_result: AllStepResult = {}
        for brain_name in env.behavior_specs:
            all_step_result[brain_name] = env.get_steps(brain_name)
        return all_step_result

    try:
        side_channels = [env_parameters, engine_configuration_channel, stats_channel]
        if training_analytics_channel is not None:
            side_channels.append(training_analytics_channel)

        env = env_factory(worker_id, side_channels)
        if (
            not env.academy_capabilities
            or not env.academy_capabilities.trainingAnalytics
        ):
            # Make sure we don't try to send training analytics if the environment doesn't know how to process
            # them. This wouldn't be catastrophic, but would result in unknown SideChannel UUIDs being used.
            training_analytics_channel = None
        if training_analytics_channel:
            training_analytics_channel.environment_initialized(run_options)

        while True:
            req: EnvironmentRequest = parent_conn.recv()
            if req.cmd == EnvironmentCommand.STEP:
                all_action_info = req.payload
                for brain_name, action_info in all_action_info.items():
                    if len(action_info.agent_ids) > 0:
                        env.set_actions(brain_name, action_info.env_action)
                env.step()
                all_step_result = _generate_all_results()
                # The timers in this process are independent from all the processes and the "main" process
                # So after we send back the root timer, we can safely clear them.
                # Note that we could randomly return timers a fraction of the time if we wanted to reduce
                # the data transferred.
                # TODO get gauges from the workers and merge them in the main process too.
                env_stats = stats_channel.get_and_reset_stats()
                step_response = StepResponse(
                    all_step_result, get_timer_root(), env_stats
                )
                step_queue.put(
                    EnvironmentResponse(
                        EnvironmentCommand.STEP, worker_id, step_response
                    )
                )
                reset_timers()
            elif req.cmd == EnvironmentCommand.BEHAVIOR_SPECS:
                _send_response(EnvironmentCommand.BEHAVIOR_SPECS, env.behavior_specs)
            elif req.cmd == EnvironmentCommand.ENVIRONMENT_PARAMETERS:
                for k, v in req.payload.items():
                    if isinstance(v, ParameterRandomizationSettings):
                        v.apply(k, env_parameters)
            elif req.cmd == EnvironmentCommand.TRAINING_STARTED:
                behavior_name, trainer_config = req.payload
                if training_analytics_channel:
                    training_analytics_channel.training_started(
                        behavior_name, trainer_config
                    )
            elif req.cmd == EnvironmentCommand.RESET:
                env.reset()
                all_step_result = _generate_all_results()
                _send_response(EnvironmentCommand.RESET, all_step_result)
            elif req.cmd == EnvironmentCommand.CLOSE:
                break
    except (
        KeyboardInterrupt,
        UnityCommunicationException,
        UnityTimeOutException,
        UnityEnvironmentException,
        UnityCommunicatorStoppedException,
    ) as ex:
        logger.info(f"UnityEnvironment worker {worker_id}: environment stopping.")
        step_queue.put(
            EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex)
        )
        _send_response(EnvironmentCommand.ENV_EXITED, ex)
    except Exception as ex:
        logger.exception(
            f"UnityEnvironment worker {worker_id}: environment raised an unexpected exception."
        )
        step_queue.put(
            EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex)
        )
        _send_response(EnvironmentCommand.ENV_EXITED, ex)
    finally:
        logger.debug(f"UnityEnvironment worker {worker_id} closing.")
        if env is not None:
            env.close()
        logger.debug(f"UnityEnvironment worker {worker_id} done.")
        parent_conn.close()
        step_queue.put(EnvironmentResponse(EnvironmentCommand.CLOSED, worker_id, None))
        step_queue.close()
Example #8
0
def test_set_logging_level():
    for level in [INFO, ERROR, FATAL, CRITICAL, DEBUG]:
        set_log_level(level)
        assert get_logger("test").level == level
Example #9
0
    def __init__(self,
                 dataset,
                 name_dataset_unity,
                 unity_env_params,
                 nSc,
                 nSt,
                 nFc,
                 nFt,
                 k,
                 size_canvas,
                 grayscale,
                 play_mode=False,
                 change_lights=False,
                 place_camera_mode=PlaceCamerasMode.RND,
                 get_labels_mode=GetLabelsMode.RND,
                 train_comparison_type=TrainComparisonType.ALL,
                 batch_provider_args=None,
                 episodes_per_epoch=999999,
                 channel=0):
        if batch_provider_args is None:
            batch_provider_args = no_batch_args

        self.place_camera_mode = place_camera_mode
        self.get_labels_mode = get_labels_mode
        self.episodes_per_epoch = episodes_per_epoch
        self.dataset = dataset
        self.k = k
        self.nSc = nSc
        self.nSt = nSt
        self.nFc = nFc
        self.grayscale = grayscale
        self.nFt = nFt
        self.matrix_values = None
        if play_mode:
            self.scene = None
            channel = 0
        else:
            if os.name == 'nt':
                machine_name = 'win'
                ext = 'exe'
            else:
                machine_name = 'linux'
                ext = 'x86_64'
            self.scene_path = f'./Unity-ML-Agents-Computer-Vision/Builds/Builds_{machine_name}/SequenceLearning/'
            self.scene_folder = f'k{self.k}_nSt{self.nSt}_nSc{self.nSc}_nFt{self.nFt}_nFc{self.nFc}_sc{size_canvas[0]}_g{int(self.grayscale)}'
            self.scene = f'{self.scene_path}/{self.scene_folder}/scene.{ext}'
            if not os.path.exists(self.scene):
                assert False, f"Unity scene {self.scene} generator does not exist, create it in Windows!"

        log.set_log_level('INFO')

        self.additional_arguments = {
            '-dataset': name_dataset_unity,
            '-place_camera_mode': self.place_camera_mode.value,
            '-get_labels_mode': self.get_labels_mode.value,
            '-train_comparison_type': train_comparison_type.value,
            '-change_lights': int(change_lights),
            '-logFile': 'logout.txt',
            '-repeat_same_batch': -1,
            **batch_provider_args
        }

        self.observation_channel = EnvironmentParametersChannel()

        while True:
            try:
                env_params_channel = StringEnvParamsChannel(
                    "621f0a70-4f87-11ea-a6bf-784f4387d1f7")
                debug_channel = StringDebugLogChannel(
                    "8e8d2cbd-ea04-444d-9180-56ed79a2b94e")
                print(
                    f"\n*** Trying to open Unity scene with dataset: {name_dataset_unity}, folder: {self.scene_folder}"
                )
                self.env = UnityEnvironment(
                    file_name=self.scene,
                    seed=batch_provider_args['-seed'],
                    side_channels=[
                        self.observation_channel, env_params_channel,
                        debug_channel
                    ],
                    no_graphics=False,
                    worker_id=channel,
                    additional_args=list(
                        np.array([
                            [k, v]
                            for k, v in self.additional_arguments.items()
                        ]).flatten()),
                    timeout_wait=180
                    if batch_provider_args['-use_batch_provider'] == 1 else 60)
                break
            except UnityWorkerInUseException as e:
                channel += 1

        self.env_params = unity_env_params(self.observation_channel)

        self.env.reset()
        self.observation_channel.set_float_parameter("newLevel", float(0))

        self.behaviour_names = list(self.env.behavior_specs.keys())
        self.num_objects = env_params_channel.num_objects
        self.labels = None
        self.camera_positions = None

        self.tot_num_frames_each_iter = self.k * (self.nSt * self.nFt +
                                                  self.nSc * self.nFc)
        self.tot_num_matching = self.k
        self.num_labels_passed_by_unity = self.k * (2 if self.nSc > 0 else 1)
        self.tot_num_frames_each_comparison = int(
            self.tot_num_frames_each_iter / self.tot_num_matching)

        self.max_length_elements = np.max(
            (self.tot_num_matching, self.tot_num_frames_each_iter))
        self.dummy_labels = np.empty(self.tot_num_frames_each_iter)
        self.images = []