Example #1
0
    def forwardSize(self, inputsize):
        isize = inputsize[0]

        if len(isize) != 4:
            raise AssertionError('Conv input size should has a lenght of 4')
        if self.inputFeature is not None and isize[1] != self.inputFeature:
            raise AssertionError('Conv put feature map size does not match')

        if self.outputFeature is not None:
            self.inputFeature = isize[1]
            self.mapMulti = self.outputFeature / self.inputFeature
        elif self.mapMulti is not None:
            self.inputFeature = isize[1]
            self.outputFeature = int(self.inputFeature * self.mapMulti)

        weightIniter = winit.XavierInit()
        initweight = weightIniter.initialize(
            (self.outputFeature, self.inputFeature, *self.filterSize))
        initbias = floatX(np.zeros((self.outputFeature, )))
        self.w = theano.shared(initweight, borrow=True)
        self.b = theano.shared(initbias, borrow=True)

        retSize = None
        if self.border == 'half':
            retSize = [(isize[0], self.outputFeature,
                        int(isize[2] / self.subsample[0]),
                        int(isize[3] / self.subsample[1]))]
        else:
            raise NotImplementedError

        return retSize
 def forwardSize(self, inputsize):
     isize = inputsize[0]
     ainit = floatX(np.ones((isize[1], )))
     self.a = theano.shared(ainit, borrow=True)
     if len(isize) == 4:
         return [(isize[0], isize[1], isize[2], isize[3])]
     if len(isize) == 2:
         return [(isize[0], isize[1])]
     else:
         raise IndexError
Example #3
0
    def forwardSize(self, inputsize):
        #print(inputsize)
        xsize = inputsize[0]
        isize = xsize[1:]
        #print('bn.size: {}'.format(isize))
        
        betaInit = floatX(np.zeros(isize))
        self.beta = theano.shared(betaInit, name=self.name+'beta', borrow=True)

        gammaInit = floatX(np.ones(isize))
        self.gamma = theano.shared(gammaInit, name=self.name+'gamma', borrow=True)

        meanInit = floatX(np.zeros(isize))
        self.meanStats = theano.shared(meanInit, borrow=True)

        varInit = floatX(np.ones(isize))
        self.varStats = theano.shared(varInit, borrow=True)

        return inputsize
Example #4
0
    def initialize(self, shape):
        if len(shape) == 2:
            # this is full connection
            coeff = np.sqrt(self.nonlinearGain / shape[0])
        elif len(shape) == 4:
            # this is conv2d
            coeff = np.sqrt(self.nonlinearGain / np.prod(shape[1:]))
        else:
            raise NotImplementedError("Unknown shape")

        #print("coeff is {}".format(coeff))
        return floatX(np.random.randn(*shape) * coeff)
Example #5
0
    def test_conv2d_forward(self):
        x = np.asarray(rng.uniform(low=-1, high=1, size=(500, 1, 28, 28)))
        w = floatX(np.random.randn(20, 1, *(3, 3)) * 0.01)

        input_x = T.tensor4()
        input_w = T.tensor4()
        y = T.nnet.conv2d(input_x,
                          input_w,
                          border_mode='half',
                          subsample=(1, 1))

        f = theano.function(inputs=[input_x, input_w],
                            outputs=y,
                            allow_input_downcast=True)
        y_shape = f(x, w).shape
        self.assertEqual(y_shape, (500, 20, 28, 28))
    def forwardSize(self, inputsize):
        isize = inputsize[0]
        #print("upconv2d input size: {}".format(isize))

        if not (len(isize) == 4 or len(isize) == 2):
            raise IndexError

        self.batchSize = isize[0]

        if len(isize) == 2:
            self.isAfterFullConn = True
            self.dataSize = (
                1,
                1,
            )
            self.outputFeatureDim = isize[1]
            self.inputFeatureDim = isize[1] // self.mapMulti
        elif len(isize) == 4:

            if self.mapMulti is None and isize[1] != self.outputFeatureDim:
                raise IndexError

            self.dataSize = isize[2:]

            if self.mapMulti is not None:
                self.outputFeatureDim = isize[1]
                self.inputFeatureDim = isize[1] // self.mapMulti

        initweight = floatX(
            np.random.randn(self.outputFeatureDim, self.inputFeatureDim, *
                            self.filterSize) * 0.01)
        self.w = theano.shared(initweight, borrow=True)

        retSize = None
        if self.border == 'valid':
            retSize = [(isize[0], self.inputFeatureDim,
                        int(isize[2] * self.subsample[0]),
                        int(isize[3] * self.subsample[1]))]
        else:
            raise NotImplementedError

        #print('upconv2d output size: {}'.format(retSize))
        return retSize
Example #7
0
def convert(def_path, caffemodel_path, output_path, phase):

    # read from .prototxt file to collect layers.
    params = caffe.proto.caffe_pb2.NetParameter()
    with open(def_path, 'r') as def_file:
        text_format.Merge(def_file.read(), params)

    layerName2InstanceMap = {}  # dict of str:layer
    layerName2Bottom = {}  # dict of str:list
    inplaceOpMap = {}  # dict of str:str
    inputLayer = None

    for layer in params.layer:
        lname = layer.name
        ltype = layer.type
        ltop = layer.top
        lbottom = layer.bottom

        if len(ltop) > 0 and len(lbottom) > 0 and ltop[0] == lbottom[0]:
            inplaceOpMap[lbottom[0]] = lname

        if ltype == 'Input':
            nl = L.RawInput((layer.input_param.shape[0].dim[1],
                             layer.input_param.shape[0].dim[2],
                             layer.input_param.shape[0].dim[3]))
            nl.name = lname
            layerName2InstanceMap[layer.name] = nl
            inputLayer = nl
        elif ltype == 'Convolution':
            name = layer.name
            bottom = layer.bottom
            output_feature_map = layer.convolution_param.num_output
            kernel_size = layer.convolution_param.kernel_size[0]
            stride = (1, 1)
            if len(layer.convolution_param.stride) > 0:
                stride = layer.convolution_param.stride[0]
                stride = (stride, stride)

            nl = L.Conv2d(filter_size=(kernel_size, kernel_size),
                          output_feature=output_feature_map,
                          subsample=stride)
            nl.name = lname
            layerName2InstanceMap[name] = nl
            layerName2Bottom[name] = layer.bottom
        elif ltype == 'ReLU':
            nl = L.Relu()
            nl.name = lname
            name = layer.name
            bottom = layer.bottom
            top = layer.top
            layerName2InstanceMap[name] = nl
            layerName2Bottom[name] = layer.bottom
        elif layer.type == 'Pooling':
            name = layer.name
            # 0: max, 1: average, 2: stochastic
            poolingMethod = layer.pooling_param.pool
            if poolingMethod == 0:
                poolingMethod = 'max'
            elif poolingMethod == 1:
                poolingMethod = 'avg'
            kernel_size = layer.pooling_param.kernel_size
            stride = layer.pooling_param.stride
            pad = layer.pooling_param.pad
            nl = L.Pooling(dsize=(kernel_size, kernel_size),
                           stride=(stride, stride),
                           pad=(pad, pad),
                           mode=poolingMethod)
            nl.name = lname
            layerName2InstanceMap[name] = nl
            layerName2Bottom[name] = layer.bottom
        elif layer.type == 'LRN':
            name = layer.name
            local_size = layer.lrn_param.local_size
            alpha = layer.lrn_param.alpha
            beta = layer.lrn_param.beta
            nl = L.LRN(local_size=local_size, alpha=alpha, beta=beta)
            nl.name = lname
            layerName2InstanceMap[name] = nl
            layerName2Bottom[name] = layer.bottom
        elif layer.type == 'Concat':
            name = layer.name
            nl = L.Concat()
            nl.name = lname
            layerName2InstanceMap[name] = nl
            layerName2Bottom[name] = layer.bottom
        elif layer.type == 'Dropout':
            name = layer.name
            ratio = layer.dropout_param.dropout_ratio
            nl = L.Dropout(p=ratio)
            nl.name = lname
            layerName2InstanceMap[name] = nl
            layerName2Bottom[name] = layer.bottom
        elif layer.type == 'InnerProduct':
            name = layer.name
            output_feature = layer.inner_product_param.num_output
            nl = L.FullConn(output_feature=output_feature)
            nl.name = lname
            layerName2InstanceMap[name] = nl

            if not isinstance(layerName2InstanceMap[layer.bottom[0]],
                              L.Flatten):
                print('Insert flatten layer before full connection')
                fl = L.Flatten()
                fl.name = name + 'pre_flatten'
                layerName2InstanceMap[fl.name] = fl
                layerName2Bottom[fl.name] = layer.bottom
                layerName2Bottom[name] = (fl.name, )
            else:
                layerName2Bottom[name] = layer.bottom
        elif layer.type == 'Softmax':
            name = layer.name
            nl = L.SoftMax()
            nl.name = lname
            layerName2InstanceMap[name] = nl
            layerName2Bottom[name] = layer.bottom
        else:
            print(layer.type)
            raise NotImplementedError('unknown caffe layer.')

    print(inplaceOpMap)

    # create the network
    n = N.Network()
    for name in layerName2InstanceMap.keys():
        if name in layerName2Bottom:
            for bottomLayer in layerName2Bottom[name]:
                if bottomLayer in inplaceOpMap.keys(
                ) and inplaceOpMap[bottomLayer] != name:
                    n.connect(layerName2InstanceMap[inplaceOpMap[bottomLayer]],
                              layerName2InstanceMap[name],
                              reload=True)
                else:
                    n.connect(layerName2InstanceMap[bottomLayer],
                              layerName2InstanceMap[name],
                              reload=True)

    n.setInput(inputLayer, reload=True)
    n.buildForwardSize()

    # read .caffemodel file to load real parameters.
    net_param = caffe_pb2.NetParameter()
    with open(caffemodel_path, 'rb') as f:
        net_param.ParseFromString(f.read())

    for layer in net_param.layers:
        lname = layer.name  # str
        ltype = layer.type  # int, the mapping is defined in caffe/src/caffe/proto/caffe.proto
        bottom = layer.bottom  # RepeatedScalarContainer
        top = layer.top  # RepeatedScalarContainer

        print("{}, {}".format(lname, ltype))
        if lname in layerName2InstanceMap.keys():
            if ltype == 4:  # convolution
                w = np.array(layer.blobs[0].data).reshape(
                    (layer.blobs[0].num, layer.blobs[0].channels,
                     layer.blobs[0].height, layer.blobs[0].width), )
                bias = np.array(layer.blobs[1].data).reshape(
                    (layer.blobs[1].width), )

                print(w.shape)
                if w.shape != layerName2InstanceMap[lname].w.get_value().shape:
                    print(w.shape)
                    print(layerName2InstanceMap[lname].w.get_value().shape)
                    raise Exception('Error, w shape do not match.')
                if bias.shape != layerName2InstanceMap[lname].b.get_value(
                ).shape:
                    print(bias.shape)
                    print(layerName2InstanceMap[lname].b.get_value().shape)
                    raise Exception('Error, b shape do not match.')

                layerName2InstanceMap[lname].w = theano.shared(floatX(w),
                                                               borrow=True)
                layerName2InstanceMap[lname].b = theano.shared(floatX(bias),
                                                               borrow=True)
            elif ltype == 5:  # data
                print('seen name: {}, {}'.format(lname, ltype))
            elif ltype == 18:  # relu
                print('seen name: {}, {}'.format(lname, ltype))
            elif ltype == 17:  # pooling
                print('seen name: {}, {}'.format(lname, ltype))
            elif ltype == 15:  # lrn
                print('seen name: {}, {}'.format(lname, ltype))
            elif ltype == 3:  # concat
                print('seen name: {}, {}'.format(lname, ltype))
            elif ltype == 6:  # dropout
                print('seen name: {}, {}'.format(lname, ltype))
            elif ltype == 14:  # fullconn
                print('seen name: {}, {}'.format(lname, ltype))
                w = np.array(layer.blobs[0].data).reshape(
                    (layer.blobs[0].width, layer.blobs[0].height), )
                bias = np.array(layer.blobs[1].data).reshape(
                    (layer.blobs[1].width), )

                print("heh:{}".format(lname))
                print(layerName2InstanceMap[lname])
                print(layerName2InstanceMap[lname].w)
                if w.shape != layerName2InstanceMap[lname].w.get_value().shape:
                    print(w.shape)
                    print(layerName2InstanceMap[lname].w.get_value().shape)
                    raise Exception('Error, w shape do not match.')
                if bias.shape != layerName2InstanceMap[lname].b.get_value(
                ).shape:
                    print(bias.shape)
                    print(layerName2InstanceMap[lname].b.get_value().shape)
                    raise Exception('Error, b shape do not match.')

                layerName2InstanceMap[lname].w = theano.shared(floatX(w),
                                                               borrow=True)
                layerName2InstanceMap[lname].b = theano.shared(floatX(bias),
                                                               borrow=True)
            elif ltype == 21:  # 21 for Softmax output, 20 for softmax
                print('seen name: {}, {}'.format(lname, ltype))
            else:
                print('seen name: {}, unknown type: {}'.format(lname, ltype))
        else:
            if len(layer.blobs) > 0:
                #raise NotImplementedError('unseen layer with blobs: {}'.format(lname))
                print('error, unseen layer with blobs: {}, {}'.format(
                    lname, ltype))
            else:
                #print('warning, unseen name: {}, {}'.format(lname, ltype))
                pass

    # finally build the network.

    n.build(reload=True)

    return n