def run(mlcube: str, platform: str, task: str): mlcube: mlcube_metadata.MLCube = mlcube_metadata.MLCube(path=mlcube) mlcube.platform = gcp_metadata.Platform(path=platform) mlcube.invoke = mlcube_metadata.MLCubeInvoke(task) mlcube.task = mlcube_metadata.MLCubeTask(os.path.join(mlcube.tasks_path, f'{mlcube.invoke.task_name}.yaml')) print(mlcube) runner = GCPRun(mlcube) runner.run(task_file=task)
def run(mlcube: str, platform: str, task: str): mlcube: mlcube_metadata.MLCube = mlcube_metadata.MLCube(path=mlcube) mlcube.platform = objects.load_object_from_file( file_path=platform, obj_class=platform_config.PlatformConfig) mlcube.invoke = mlcube_metadata.MLCubeInvoke(task) mlcube.task = mlcube_metadata.MLCubeTask( os.path.join(mlcube.tasks_path, f'{mlcube.invoke.task_name}.yaml')) print(mlcube) runner = DockerRun(mlcube) runner.run()
def setUp(self): self.path_to_mlcube = os.path.join(os.path.dirname(__file__), "test_data/test_cube") self.path_to_platform = os.path.join(self.path_to_mlcube, "platforms/docker.yaml") self.path_to_task = os.path.join(self.path_to_mlcube, "run/kubernetes.yaml") self.mlcube = mlcube_metadata.MLCube(path=self.path_to_mlcube) self.mlcube.platform = objects.load_object_from_file( file_path=self.path_to_platform, obj_class=platform_config.PlatformConfig) self.mlcube.invoke = mlcube_metadata.MLCubeInvoke(self.path_to_task) self.mlcube_k8s_runner = KubernetesRun(mlcube=self.mlcube, loglevel="INFO")