def _run( uri, experiment_id, entry_point, version, parameters, docker_args, backend_name, backend_config, use_conda, storage_dir, synchronous, ): """ Helper that delegates to the project-running method corresponding to the passed-in backend. Returns a ``SubmittedRun`` corresponding to the project run. """ tracking_store_uri = tracking.get_tracking_uri() backend_config[PROJECT_USE_CONDA] = use_conda backend_config[PROJECT_SYNCHRONOUS] = synchronous backend_config[PROJECT_DOCKER_ARGS] = docker_args backend_config[PROJECT_STORAGE_DIR] = storage_dir # TODO: remove this check once kubernetes execution has been refactored if backend_name not in {"databricks", "kubernetes"}: backend = loader.load_backend(backend_name) if backend: submitted_run = backend.run( uri, entry_point, parameters, version, backend_config, tracking_store_uri, experiment_id, ) tracking.MlflowClient().set_tag(submitted_run.run_id, MLFLOW_PROJECT_BACKEND, backend_name) return submitted_run work_dir = fetch_and_validate_project(uri, version, entry_point, parameters) project = load_project(work_dir) _validate_execution_environment(project, backend_name) active_run = get_or_create_run(None, uri, experiment_id, work_dir, version, entry_point, parameters) if backend_name == "databricks": tracking.MlflowClient().set_tag(active_run.info.run_id, MLFLOW_PROJECT_BACKEND, "databricks") from mlflow.projects.databricks import run_databricks return run_databricks( remote_run=active_run, uri=uri, entry_point=entry_point, work_dir=work_dir, parameters=parameters, experiment_id=experiment_id, cluster_spec=backend_config, ) elif backend_name == "kubernetes": from mlflow.projects.docker import ( build_docker_image, validate_docker_env, validate_docker_installation, ) from mlflow.projects import kubernetes as kb tracking.MlflowClient().set_tag(active_run.info.run_id, MLFLOW_PROJECT_ENV, "docker") tracking.MlflowClient().set_tag(active_run.info.run_id, MLFLOW_PROJECT_BACKEND, "kubernetes") validate_docker_env(project) validate_docker_installation() kube_config = _parse_kubernetes_config(backend_config) image = build_docker_image( work_dir=work_dir, repository_uri=kube_config["repository-uri"], base_image=project.docker_env.get("image"), run_id=active_run.info.run_id, ) image_digest = kb.push_image_to_registry(image.tags[0]) submitted_run = kb.run_kubernetes_job( project.name, active_run, image.tags[0], image_digest, get_entry_point_command(project, entry_point, parameters, storage_dir), get_run_env_vars(run_id=active_run.info.run_uuid, experiment_id=active_run.info.experiment_id), kube_config.get("kube-context", None), kube_config["kube-job-template"], ) return submitted_run supported_backends = ["databricks", "kubernetes"] + list( loader.MLFLOW_BACKENDS.keys()) raise ExecutionException("Got unsupported execution mode %s. Supported " "values: %s" % (backend_name, supported_backends))
def run(self, project_uri, entry_point, params, version, backend_config, tracking_uri, experiment_id): work_dir = fetch_and_validate_project(project_uri, version, entry_point, params) project = load_project(work_dir) if MLFLOW_LOCAL_BACKEND_RUN_ID_CONFIG in backend_config: run_id = backend_config[MLFLOW_LOCAL_BACKEND_RUN_ID_CONFIG] else: run_id = None active_run = get_or_create_run(run_id, project_uri, experiment_id, work_dir, version, entry_point, params) command_args = [] command_separator = " " use_conda = backend_config[PROJECT_USE_CONDA] synchronous = backend_config[PROJECT_SYNCHRONOUS] docker_args = backend_config[PROJECT_DOCKER_ARGS] storage_dir = backend_config[PROJECT_STORAGE_DIR] # If a docker_env attribute is defined in MLproject then it takes precedence over conda yaml # environments, so the project will be executed inside a docker container. if project.docker_env: tracking.MlflowClient().set_tag(active_run.info.run_id, MLFLOW_PROJECT_ENV, "docker") validate_docker_env(project) validate_docker_installation() image = build_docker_image( work_dir=work_dir, repository_uri=project.name, base_image=project.docker_env.get('image'), run_id=active_run.info.run_id) command_args += _get_docker_command( image=image, active_run=active_run, docker_args=docker_args, volumes=project.docker_env.get("volumes"), user_env_vars=project.docker_env.get("environment")) # Synchronously create a conda environment (even though this may take some time) # to avoid failures due to multiple concurrent attempts to create the same conda env. elif use_conda: tracking.MlflowClient().set_tag(active_run.info.run_id, MLFLOW_PROJECT_ENV, "conda") command_separator = " && " conda_env_name = get_or_create_conda_env(project.conda_env_path) command_args += get_conda_command(conda_env_name) # In synchronous mode, run the entry point command in a blocking fashion, sending status # updates to the tracking server when finished. Note that the run state may not be # persisted to the tracking server if interrupted if synchronous: command_args += get_entry_point_command(project, entry_point, params, storage_dir) command_str = command_separator.join(command_args) return _run_entry_point(command_str, work_dir, experiment_id, run_id=active_run.info.run_id) # Otherwise, invoke `mlflow run` in a subprocess return _invoke_mlflow_run_subprocess(work_dir=work_dir, entry_point=entry_point, parameters=params, experiment_id=experiment_id, use_conda=use_conda, storage_dir=storage_dir, run_id=active_run.info.run_id)
def run( self, project_uri, entry_point, params, version, backend_config, tracking_uri, experiment_id ): work_dir = fetch_and_validate_project(project_uri, version, entry_point, params) project = load_project(work_dir) if MLFLOW_LOCAL_BACKEND_RUN_ID_CONFIG in backend_config: run_id = backend_config[MLFLOW_LOCAL_BACKEND_RUN_ID_CONFIG] else: run_id = None active_run = get_or_create_run( run_id, project_uri, experiment_id, work_dir, version, entry_point, params ) command_args = [] command_separator = " " env_manager = backend_config[PROJECT_ENV_MANAGER] synchronous = backend_config[PROJECT_SYNCHRONOUS] docker_args = backend_config[PROJECT_DOCKER_ARGS] storage_dir = backend_config[PROJECT_STORAGE_DIR] # Select an appropriate env manager for the project env type if env_manager is None: env_manager = _env_type_to_env_manager(project.env_type) else: if project.env_type == env_type.PYTHON and env_manager == _EnvManager.CONDA: raise MlflowException.invalid_parameter_value( "python_env project cannot be executed using conda. Set `--env-manager` to " "'virtualenv' or 'local' to execute this project." ) # If a docker_env attribute is defined in MLproject then it takes precedence over conda yaml # environments, so the project will be executed inside a docker container. if project.docker_env: from mlflow.projects.docker import ( validate_docker_env, validate_docker_installation, build_docker_image, ) tracking.MlflowClient().set_tag(active_run.info.run_id, MLFLOW_PROJECT_ENV, "docker") validate_docker_env(project) validate_docker_installation() image = build_docker_image( work_dir=work_dir, repository_uri=project.name, base_image=project.docker_env.get("image"), run_id=active_run.info.run_id, ) command_args += _get_docker_command( image=image, active_run=active_run, docker_args=docker_args, volumes=project.docker_env.get("volumes"), user_env_vars=project.docker_env.get("environment"), ) # Synchronously create a conda environment (even though this may take some time) # to avoid failures due to multiple concurrent attempts to create the same conda env. elif env_manager == _EnvManager.VIRTUALENV: tracking.MlflowClient().set_tag( active_run.info.run_id, MLFLOW_PROJECT_ENV, "virtualenv" ) command_separator = " && " if project.env_type == env_type.CONDA: python_env = _PythonEnv.from_conda_yaml(project.env_config_path) else: python_env = _PythonEnv.from_yaml(project.env_config_path) python_bin_path = _install_python(python_env.python) env_root = _get_mlflow_virtualenv_root() work_dir_path = Path(work_dir) env_name = _get_virtualenv_name(python_env, work_dir_path) env_dir = Path(env_root).joinpath(env_name) activate_cmd = _create_virtualenv(work_dir_path, python_bin_path, env_dir, python_env) command_args += [activate_cmd] elif env_manager == _EnvManager.CONDA: tracking.MlflowClient().set_tag(active_run.info.run_id, MLFLOW_PROJECT_ENV, "conda") command_separator = " && " conda_env_name = get_or_create_conda_env(project.env_config_path) command_args += get_conda_command(conda_env_name) # In synchronous mode, run the entry point command in a blocking fashion, sending status # updates to the tracking server when finished. Note that the run state may not be # persisted to the tracking server if interrupted if synchronous: command_args += get_entry_point_command(project, entry_point, params, storage_dir) command_str = command_separator.join(command_args) return _run_entry_point( command_str, work_dir, experiment_id, run_id=active_run.info.run_id ) # Otherwise, invoke `mlflow run` in a subprocess return _invoke_mlflow_run_subprocess( work_dir=work_dir, entry_point=entry_point, parameters=params, experiment_id=experiment_id, env_manager=env_manager, docker_args=docker_args, storage_dir=storage_dir, run_id=active_run.info.run_id, )