Example #1
0
def register_model(model_uri, name):
    """
    Create a new model version in model registry for the model files specified by ``model_uri``.
    Note that this method assumes the model registry backend URI is the same as that of the
    tracking backend.
    :param model_uri: URI referring to the MLmodel directory. Use a ``runs:/`` URI if you want to
                      record the run ID with the model in model registry. ``models:/`` URIs are
                      currently not supported.
    :param name: Name of the registered model under which to create a new model version. If a
                 registered model with the given name does not exist, it will be created
                 automatically.
    :return: Single :py:class:`mlflow.entities.model_registry.ModelVersion` object created by
             backend.
    """
    client = MlflowClient()
    try:
        client.create_registered_model(name)
    except MlflowException as e:
        if e.error_code == ErrorCode.Name(RESOURCE_ALREADY_EXISTS):
            eprint(
                "Registered model %s already exists. Using it to create a new version."
                % name)
        else:
            raise e

    if RunsArtifactRepository.is_runs_uri(model_uri):
        source = RunsArtifactRepository.get_underlying_uri(model_uri)
        (run_id, _) = RunsArtifactRepository.parse_runs_uri(model_uri)
        return client.create_model_version(name, source, run_id)
    else:
        return client.create_model_version(name, source=model_uri, run_id=None)
Example #2
0
def test_get_artifact_uri(uri, expected_tracking_uri, mock_uri,
                          expected_result_uri):
    with mock.patch("mlflow.tracking.artifact_utils.get_artifact_uri",
                    return_value=mock_uri) as get_artifact_uri_mock:
        result_uri = RunsArtifactRepository.get_underlying_uri(uri)
        get_artifact_uri_mock.assert_called_once_with("1234abcdf1394asdfwer33",
                                                      "path/model",
                                                      expected_tracking_uri)
        assert result_uri == expected_result_uri
Example #3
0
def load_model(model_uri, dfs_tmpdir=None):
    """
    Load the Spark MLlib model from the path.

    :param model_uri: The location, in URI format, of the MLflow model, for example:

                      - ``/Users/me/path/to/local/model``
                      - ``relative/path/to/local/model``
                      - ``s3://my_bucket/path/to/model``
                      - ``runs:/<mlflow_run_id>/run-relative/path/to/model``
                      - ``models:/<model_name>/<model_version>``
                      - ``models:/<model_name>/<stage>``

                      For more information about supported URI schemes, see
                      `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html#
                      artifact-locations>`_.
    :param dfs_tmpdir: Temporary directory path on Distributed (Hadoop) File System (DFS) or local
                       filesystem if running in local mode. The model is loaded from this
                       destination. Defaults to ``/tmp/mlflow``.
    :return: pyspark.ml.pipeline.PipelineModel

    .. code-block:: python
        :caption: Example

        from mlflow import spark
        model = mlflow.spark.load_model("spark-model")
        # Prepare test documents, which are unlabeled (id, text) tuples.
        test = spark.createDataFrame([
            (4, "spark i j k"),
            (5, "l m n"),
            (6, "spark hadoop spark"),
            (7, "apache hadoop")], ["id", "text"])
        # Make predictions on test documents
        prediction = model.transform(test)
    """
    if RunsArtifactRepository.is_runs_uri(model_uri):
        runs_uri = model_uri
        model_uri = RunsArtifactRepository.get_underlying_uri(model_uri)
        _logger.info("'%s' resolved as '%s'", runs_uri, model_uri)
    elif ModelsArtifactRepository.is_models_uri(model_uri):
        runs_uri = model_uri
        model_uri = ModelsArtifactRepository.get_underlying_uri(model_uri)
        _logger.info("'%s' resolved as '%s'", runs_uri, model_uri)
    flavor_conf = _get_flavor_configuration_from_uri(model_uri, FLAVOR_NAME)
    model_uri = append_to_uri_path(model_uri, flavor_conf["model_data"])
    local_model_path = _download_artifact_from_uri(model_uri)
    _add_code_from_conf_to_system_path(local_model_path, flavor_conf)

    return _load_model(model_uri=model_uri, dfs_tmpdir_base=dfs_tmpdir)
Example #4
0
def register_model(model_uri,
                   name,
                   await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS):
    """
    Create a new model version in model registry for the model files specified by ``model_uri``.
    Note that this method assumes the model registry backend URI is the same as that of the
    tracking backend.

    :param model_uri: URI referring to the MLmodel directory. Use a ``runs:/`` URI if you want to
                      record the run ID with the model in model registry. ``models:/`` URIs are
                      currently not supported.
    :param name: Name of the registered model under which to create a new model version. If a
                 registered model with the given name does not exist, it will be created
                 automatically.
    :param await_registration_for: Number of seconds to wait for the model version to finish
                            being created and is in ``READY`` status. By default, the function
                            waits for five minutes. Specify 0 or None to skip waiting.
    :return: Single :py:class:`mlflow.entities.model_registry.ModelVersion` object created by
             backend.
    """
    client = MlflowClient()
    try:
        create_model_response = client.create_registered_model(name)
        eprint("Successfully registered model '%s'." %
               create_model_response.name)
    except MlflowException as e:
        if e.error_code == ErrorCode.Name(RESOURCE_ALREADY_EXISTS):
            eprint(
                "Registered model '%s' already exists. Creating a new version of this model..."
                % name)
        else:
            raise e

    if RunsArtifactRepository.is_runs_uri(model_uri):
        source = RunsArtifactRepository.get_underlying_uri(model_uri)
        (run_id, _) = RunsArtifactRepository.parse_runs_uri(model_uri)
        create_version_response = client.create_model_version(
            name, source, run_id)
    else:
        create_version_response = client.create_model_version(
            name,
            source=model_uri,
            run_id=None,
            await_creation_for=await_registration_for)
    eprint("Created version '{version}' of model '{model_name}'.".format(
        version=create_version_response.version,
        model_name=create_version_response.name))
    return create_version_response
Example #5
0
def load_model(model_uri, dfs_tmpdir=None):
    """
    Load the Spark MLlib model from the path.

    :param model_uri: The location, in URI format, of the MLflow model, for example:

                      - ``/Users/me/path/to/local/model``
                      - ``relative/path/to/local/model``
                      - ``s3://my_bucket/path/to/model``
                      - ``runs:/<mlflow_run_id>/run-relative/path/to/model``

                      For more information about supported URI schemes, see
                      `Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
                      artifact-locations>`_.
    :param dfs_tmpdir: Temporary directory path on Distributed (Hadoop) File System (DFS) or local
                       filesystem if running in local mode. The model is loaded from this
                       destination. Defaults to ``/tmp/mlflow``.
    :return: pyspark.ml.pipeline.PipelineModel

    >>> from mlflow import spark
    >>> model = mlflow.spark.load_model("spark-model")
    >>> # Prepare test documents, which are unlabeled (id, text) tuples.
    >>> test = spark.createDataFrame([
    ...   (4, "spark i j k"),
    ...   (5, "l m n"),
    ...   (6, "spark hadoop spark"),
    ...   (7, "apache hadoop")], ["id", "text"])
    >>>  # Make predictions on test documents.
    >>> prediction = model.transform(test)
    """
    if RunsArtifactRepository.is_runs_uri(model_uri):
        runs_uri = model_uri
        model_uri = RunsArtifactRepository.get_underlying_uri(model_uri)
        _logger.info("'%s' resolved as '%s'", runs_uri, model_uri)
    flavor_conf = _get_flavor_configuration_from_uri(model_uri, FLAVOR_NAME)
    model_uri = posixpath.join(model_uri, flavor_conf["model_data"])
    return _load_model(model_uri=model_uri, dfs_tmpdir=dfs_tmpdir)
Example #6
0
def register_model(model_uri,
                   name,
                   await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS):
    """
    Create a new model version in model registry for the model files specified by ``model_uri``.
    Note that this method assumes the model registry backend URI is the same as that of the
    tracking backend.

    :param model_uri: URI referring to the MLmodel directory. Use a ``runs:/`` URI if you want to
                      record the run ID with the model in model registry. ``models:/`` URIs are
                      currently not supported.
    :param name: Name of the registered model under which to create a new model version. If a
                 registered model with the given name does not exist, it will be created
                 automatically.
    :param await_registration_for: Number of seconds to wait for the model version to finish
                            being created and is in ``READY`` status. By default, the function
                            waits for five minutes. Specify 0 or None to skip waiting.
    :return: Single :py:class:`mlflow.entities.model_registry.ModelVersion` object created by
             backend.

    .. code-block:: python
        :caption: Example

        import mlflow.sklearn
        from sklearn.ensemble import RandomForestRegressor

        mlflow.set_tracking_uri("sqlite:////tmp/mlruns.db")
        params = {"n_estimators": 3, "random_state": 42}

        # Log MLflow entities
        with mlflow.start_run() as run:
           rfr = RandomForestRegressor(**params).fit([[0, 1]], [1])
           mlflow.log_params(params)
           mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model")

        model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
        mv = mlflow.register_model(model_uri, "RandomForestRegressionModel")
        print("Name: {}".format(mv.name))
        print("Version: {}".format(mv.version))

    .. code-block:: text
        :caption: Output

        Name: RandomForestRegressionModel
        Version: 1
    """
    client = MlflowClient()
    try:
        create_model_response = client.create_registered_model(name)
        eprint("Successfully registered model '%s'." %
               create_model_response.name)
    except MlflowException as e:
        if e.error_code == ErrorCode.Name(RESOURCE_ALREADY_EXISTS):
            eprint(
                "Registered model '%s' already exists. Creating a new version of this model..."
                % name)
        else:
            raise e

    if RunsArtifactRepository.is_runs_uri(model_uri):
        source = RunsArtifactRepository.get_underlying_uri(model_uri)
        (run_id, _) = RunsArtifactRepository.parse_runs_uri(model_uri)
        create_version_response = client.create_model_version(
            name, source, run_id, await_creation_for=await_registration_for)
    else:
        create_version_response = client.create_model_version(
            name,
            source=model_uri,
            run_id=None,
            await_creation_for=await_registration_for)
    eprint("Created version '{version}' of model '{model_name}'.".format(
        version=create_version_response.version,
        model_name=create_version_response.name))
    return create_version_response