def list_model_commands(args): """ List the commands supported by this model.""" model = args.model # Correct model name if possible. matched_model = utils.get_misspelled_pkg(model) if matched_model is not None: model = matched_model logger = logging.getLogger(__name__) logger.info("List available commands of '{}'".format(model)) # Check that the model is installed. utils.check_model_installed(model) entry = utils.load_description(model) commands = entry['commands'] if args.name_only: print('\n'.join(list(commands))) return msg = "The '{}' model " meta = entry['meta'] if 'title' not in meta: title = None else: title = utils.lower_first_letter(utils.dropdot(meta['title'])) msg += "({}) " msg += "supports the following commands:" msg = msg.format(model, title) msg = textwrap.fill(msg, width=75) print(msg) for cmd in commands: utils.print_model_cmd_help(entry, cmd) # Update bash completion list. utils.update_command_completion(set(commands)) # Suggest next step. if not args.quiet: utils.print_next_step('commands', description=entry, model=model)
def install_model(args): """Install a model. Args: args: Command line args parsed by argparse. args.model (str): mlm/zip path, mlm/zip url, model name, GitHub repo, like mlhubber/mlhub, or MLHUB.yaml on github repo, like mlhubber/audit:doc/MLHUB.yaml. """ logger = logging.getLogger(__name__) logger.info('Install a model.') logger.debug('args: {}'.format(args)) model = args.model # model pkg name location = args.model # pkg file path or URL version = None # model pkg version mlhubyaml = None # MLHUB.yaml path or URL # Obtain the model URL if not a local file. if not utils.is_archive(model) and not utils.is_url( model) and '/' not in model: # Model package name, which can be found in mlhub repo. # Like: # $ ml install audit # # We assume the URL got from mlhub repo is a link to a mlm/zip/tar file # or a GitHub repo reference or MLHUB.yaml. # Correct model name if possible. matched_model = utils.get_misspelled_pkg(model) if matched_model is not None: model = matched_model # Get model pkg meta data from mlhub repo. location, version, meta_list = utils.get_model_info_from_repo( model, args.mlhub) # Update bash completion list. utils.update_model_completion({e['meta']['name'] for e in meta_list}) if not utils.is_archive(location): # Model from GitHub. # Like: # $ ml install mlhubber/audit # $ ml install mlhubber/audit:doc/MLHUB.yaml # $ ml install https://github.com/mlhubber/audit/... mlhubyaml = utils.get_pkgyaml_github_url(location) # URL to MLHUB.yaml location = utils.get_githubrepo_zip_url(location) logger.debug("location: {}".format(location)) logger.debug("mlhubyaml: {}".format(mlhubyaml)) # Determine the path of downloaded/existing model package file pkgfile = None if utils.is_archive(location): pkgfile = os.path.basename(location) # pkg file name elif utils.is_url(location): pkgfile = utils.get_url_filename(location) # Query archive type if not available from file name per se. while pkgfile is None or not utils.is_archive(pkgfile): print( "The file type cannot be determined.\n" "Please give it a file name with explicit valid archive extension: ", end='') pkgfile = input() uncompressdir = pkgfile[:pkgfile.rfind( '.')] # Dir Where pkg file is extracted # Installation. entry = None # Meta info read from MLHUB.yaml with tempfile.TemporaryDirectory() as mlhubtmpdir: # Determine the local path of the model package if utils.is_url(location): local = os.path.join(mlhubtmpdir, pkgfile) # downloaded else: local = location # local file path uncompressdir = os.path.join(mlhubtmpdir, uncompressdir) # Obtain model version. if version is None: if utils.ends_with_mlm( pkgfile): # Get version number from MLM file name. model, version = utils.interpret_mlm_name(pkgfile) elif not utils.is_github_url( location): # Get MLHUB.yaml inside the archive file. if utils.is_url( location ): # Download the package file because it is not from GitHub. utils.download_model_pkg(location, local, pkgfile, args.quiet) if not args.quiet: print("Extracting '{}' ...\n".format(pkgfile)) utils.unpack_with_promote(local, uncompressdir, valid_name=pkgfile) mlhubyaml = utils.get_available_pkgyaml( uncompressdir) # Path to MLHUB.yaml if mlhubyaml is not None: # Get version number from MLHUB.yaml entry = utils.read_mlhubyaml(mlhubyaml) meta = entry["meta"] model = meta["name"] version = meta["version"] utils.update_model_completion({model }) # Update bash completion list. # Check if model is already installed. install_path = utils.get_package_dir(model) # Installation path if os.path.exists(install_path): installed_version = utils.load_description( model)['meta']['version'] # Ensure version number is string. installed_version = str(installed_version) version = str(version) if StrictVersion(installed_version) > StrictVersion(version): yes = utils.yes_or_no( "Downgrade '{}' from version '{}' to version '{}'", model, installed_version, version, yes=True) elif StrictVersion(installed_version) == StrictVersion(version): yes = utils.yes_or_no( "Replace '{}' version '{}' with version '{}'", model, installed_version, version, yes=True) else: yes = utils.yes_or_no( "Upgrade '{}' from version '{}' to version '{}'", model, installed_version, version, yes=True) if not yes: sys.exit(0) else: print() shutil.rmtree(install_path) # Uncompress package file. if not os.path.exists( uncompressdir ): # Model pkg mlm or GitHub pkg has not unzipped yet. if utils.is_url(location): # Download the package file if needed. utils.download_model_pkg(location, local, pkgfile, args.quiet) if not args.quiet: print("Extracting '{}' ...\n".format(pkgfile)) utils.unpack_with_promote(local, uncompressdir, valid_name=pkgfile) # Install package files. # # Because it is time-consuming to download all package files one-by-one , we # download the whole zipball from the repo first, then re-arrange the files # according to `dependencies` -> `files` in MLHUB.yaml if any. # Find if any files specified in MLHUB.yaml if mlhubyaml is None: # MLM file which can obtain version number from it name. mlhubyaml = utils.get_available_pkgyaml(uncompressdir) entry = utils.read_mlhubyaml(mlhubyaml) depspec = None if 'dependencies' in entry: depspec = entry['dependencies'] elif 'dependencies' in entry['meta']: depspec = entry['meta']['dependencies'] file_spec = None if depspec is not None and 'files' in depspec: file_spec = {'files': depspec['files']} elif 'files' in entry: file_spec = {'files': entry['files']} if file_spec is not None: # install package files if they are specified in MLHUB.yaml # MLHUB.yaml should always be at the package root. os.mkdir(install_path) if utils.is_url( mlhubyaml ): # We currently only support MLHUB.yaml specified on GitHub. if mlhubyaml.startswith("https://api"): urllib.request.urlretrieve( json.loads(urllib.request.urlopen( mlhubyaml).read())['download_url'], os.path.join(install_path, MLHUB_YAML)) else: urllib.request.urlretrieve( mlhubyaml, os.path.join(install_path, MLHUB_YAML)) else: shutil.move(mlhubyaml, install_path) # All package files except MLHUB.yaml should be specified in 'files' of MLHUB.yaml try: utils.install_file_deps( utils.flatten_mlhubyaml_deps(file_spec)[0][1], model, downloadir=uncompressdir) except utils.ModePkgInstallationFileNotFoundException as e: if os.path.exists(install_path): shutil.rmtree(install_path) raise else: # Otherwise, put all files under package dir. # **Note** Here we must make sure <instal_path> does not exist. # Otherwise, <unzipdir> will be inside <install_path> shutil.move(uncompressdir, install_path) # Update bash completion list. utils.update_command_completion( set(utils.load_description(model)['commands'])) # Update working dir if any. if args.workding_dir is not None: utils.update_working_dir(model, args.workding_dir) if not args.quiet: # Informative message about the size of the installed model. print("Installed '{}' into '{}' ({:,} bytes).".format( model, install_path, utils.dir_size(install_path))) # Suggest next step. README or DOWNLOAD utils.print_next_step('install', model=model)
def install_model(args): """Install a model. Args: args: Command line args parsed by argparse. args.model (str): mlm/zip path, mlm/zip url, model name, GitHub repo, like mlhubber/mlhub, or MLHUB.yaml on github repo, like mlhubber/audit:doc/MLHUB.yaml. """ logger = logging.getLogger(__name__) logger.info("Install a model.") logger.debug(f"args: {args}") # Avoid 403 errors which result when the header identifies itself # as python urllib or is empty and thus the web site assumes it is # a robot. We are not a robot but a user downloading a file. This # will ensure gitlab is okay with retrieving from a URL by adding # a header rather than no header. TODO move to using Requests. opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] urllib.request.install_opener(opener) model = args.model # model pkg name location = args.model # pkg file path or URL key = args.i # SSH key version = None # model pkg version mlhubyaml = None # MLHUB.yaml path or URL repo_obj = None # RepoTypeURL object for related URL interpretation maybe_private = False # Maybe private repo # Obtain the model URL if not a local file. if ( not utils.is_archive_file(model) and not utils.is_url(model) and "/" not in model ): # Model package name, which can be found in mlhub repo. # Like: # $ ml install audit # # We assume the URL got from mlhub repo is a link to a mlm/zip/tar file # or a GitHub repo reference or MLHUB.yaml. # Correct model name if possible. matched_model = utils.get_misspelled_pkg(model) if matched_model is not None: model = matched_model # Get model pkg meta data from mlhub repo. location, version, meta_list = utils.get_model_info_from_repo( model, args.mlhub ) # Update bash completion list. utils.update_model_completion({e["meta"]["name"] for e in meta_list}) if not utils.is_archive_file(location): # Model from a repo such as GitHub, GitLab, Bitbucket etc. # # Possible options are: # $ ml install mlhubber/audit # latest commit on the master branch of GitHub repo mlhubber/audit # $ ml install mlhubber/audit@dev # latest commit on the dev branch of GitHub repo mlhubber/audit # $ ml install mlhubber/audit@0001ea4 # commit 0001ea4 of mlhubber/audit # $ ml install mlhubber/audit:doc/MLHUB.yaml # latest commit on master, but a specified YAML file # $ ml install https://github.com/mlhubber/audit/... # Arbitrary GitHub link address # # $ ml install github:mlhubber/audit # GitHub repo, the same as ml install mlhubber/audit # # $ ml install gitlab:mlhubber/audit@2fe89kh:doc/MLHUB.yaml # GitLab repo # $ ml install https://https://gitlab.com/mlhubber/audit/... # GitLab repo # # $ ml install bitbucket:mlhubber/audit # BitBucket repo # $ ml install https://bitbucket.org/mlhubber/audit/... # BitBucket repo repo_obj = utils.RepoTypeURL.get_repo_obj(location) try: mlhubyaml = repo_obj.get_pkg_yaml_url() location = repo_obj.compose_repo_zip_url() logger.debug(f"location: {location}") logger.debug(f"mlhubyaml: {mlhubyaml}") except utils.DescriptionYAMLNotFoundException: # Maybe private repo maybe_private = True pass # Determine the path of downloaded/existing model package file pkgfile = None if maybe_private: # Maybe private repo pkgfile = repo_obj.repo elif utils.is_archive_file(location): pkgfile = os.path.basename(location) # pkg file name elif utils.is_url(location): pkgfile = utils.get_url_filename(location) # Query archive type if not available from file name per se. if not maybe_private: while pkgfile is None or not utils.is_archive_file(pkgfile): print( "The file type cannot be determined.\n" "Please give it a file name with explicit valid archive extension: ", end="", ) pkgfile = input() if maybe_private: uncompressdir = pkgfile else: uncompressdir = pkgfile[ : pkgfile.rfind(".") ] # Dir Where pkg file is extracted # Installation. entry = None # Meta info read from MLHUB.yaml with tempfile.TemporaryDirectory() as mlhubtmpdir: # Determine the local path of the model package if maybe_private: local = None elif utils.is_url(location): local = os.path.join(mlhubtmpdir, pkgfile) # downloaded else: local = location # local file path uncompressdir = os.path.join(mlhubtmpdir, uncompressdir) # Obtain model version. if version is None: if utils.ends_with_mlm( pkgfile ): # Get version number from MLM file name. model, version = utils.interpret_mlm_name(pkgfile) elif not repo_obj: # Get MLHUB.yaml inside the archive file. if utils.is_url( location ): # Download the package file because it is not from GitHub. utils.download_model_pkg( location, local, pkgfile, args.quiet ) if not args.quiet: print("Extracting '{}' ...\n".format(pkgfile)) utils.unpack_with_promote( local, uncompressdir, valid_name=pkgfile ) mlhubyaml = utils.get_available_pkgyaml( uncompressdir ) # Path to MLHUB.yaml elif maybe_private: identity_env = ( "GIT_SSH_COMMAND='ssh -i {}' ".format(key) if key else "" ) command = "cd {}; {}git clone {}; cd {}; git checkout {}".format( mlhubtmpdir, identity_env, repo_obj.get_ssh_clone_url(), repo_obj.repo, repo_obj.ref, ) proc = subprocess.Popen( command, shell=True, stderr=subprocess.PIPE ) output, errors = proc.communicate() if proc.returncode != 0: raise utils.InstallFailedException(errors.decode("utf-8")) if repo_obj.path: mlhubyaml = os.path.join(uncompressdir, repo_obj.path) else: mlhubyaml = utils.get_available_pkgyaml( uncompressdir ) # Path to MLHUB.yaml if mlhubyaml is not None: # Get version number from MLHUB.yaml entry = utils.read_mlhubyaml(mlhubyaml) meta = entry["meta"] model = meta["name"] version = meta["version"] utils.update_model_completion( {model} ) # Update bash completion list. # Check if model is already installed. install_path = utils.get_package_dir(model) # Installation path if os.path.exists(install_path): installed_version = utils.load_description(model)["meta"][ "version" ] # Ensure version number is string. installed_version = str(installed_version) version = str(version) if StrictVersion(installed_version) > StrictVersion(version): yes = utils.yes_or_no( "Downgrade '{}' from version '{}' to version '{}'", model, installed_version, version, yes=True, ) elif StrictVersion(installed_version) == StrictVersion(version): yes = utils.yes_or_no( "Replace '{}' version '{}' with version '{}'", model, installed_version, version, yes=True, ) else: yes = utils.yes_or_no( "Upgrade '{}' from version '{}' to version '{}'", model, installed_version, version, yes=True, ) if not yes: # Suggest next step before exiting, as if an install has just happened. utils.print_next_step("install", model=model) sys.exit(0) else: print() shutil.rmtree(install_path) # Uncompress package file. if not os.path.exists( uncompressdir ): # Model pkg mlm or GitHub pkg has not unzipped yet. if utils.is_url(location): # Download the package file if needed. utils.download_model_pkg(location, local, pkgfile, args.quiet) if not args.quiet: print("Extracting '{}' ...\n".format(pkgfile)) utils.unpack_with_promote(local, uncompressdir, valid_name=pkgfile) # Install package files. # # Because it is time-consuming to download all package files one-by-one , we # download the whole zipball from the repo first, then re-arrange the files # according to `dependencies` -> `files` in MLHUB.yaml if any. # Find if any files specified in MLHUB.yaml if ( mlhubyaml is None ): # MLM file which can obtain version number from it name. mlhubyaml = utils.get_available_pkgyaml(uncompressdir) entry = utils.read_mlhubyaml(mlhubyaml) depspec = None if "dependencies" in entry: depspec = entry["dependencies"] elif "dependencies" in entry["meta"]: depspec = entry["meta"]["dependencies"] file_spec = None if depspec is not None and "files" in depspec: file_spec = {"files": depspec["files"]} elif "files" in entry: file_spec = {"files": entry["files"]} if ( file_spec is not None ): # install package files if they are specified in MLHUB.yaml # MLHUB.yaml should always be at the package root. os.mkdir(install_path) if utils.is_url( mlhubyaml ): # We currently only support MLHUB.yaml specified on GitHub. if mlhubyaml.startswith("https://api"): urllib.request.urlretrieve( json.loads(urllib.request.urlopen(mlhubyaml).read())[ "download_url" ], os.path.join(install_path, MLHUB_YAML), ) else: urllib.request.urlretrieve( mlhubyaml, os.path.join(install_path, MLHUB_YAML) ) else: shutil.move(mlhubyaml, install_path) # All package files except MLHUB.yaml should be specified in 'files' of MLHUB.yaml try: utils.install_file_deps( utils.flatten_mlhubyaml_deps(file_spec)[0][1], model, downloadir=uncompressdir, yes=True, ) except utils.ModelPkgInstallationFileNotFoundException: if os.path.exists(install_path): shutil.rmtree(install_path) raise else: # Otherwise, put all files under package dir. # **Note** Here we must make sure <install_path> does not exist. # Otherwise, <unzipdir> will be inside <install_path> shutil.move(uncompressdir, install_path) # Update bash completion list. utils.update_command_completion( set(utils.load_description(model)["commands"]) ) # Update working dir if any. if args.working_dir is not None: utils.update_working_dir(model, args.working_dir) if not args.quiet: # Informative message about the size of the installed model. msg = f"Found '{model}' version {version}.\n\nInstalled '{model}' " msg += f"into '{install_path}/' ({utils.dir_size(install_path):,} bytes)." print(msg) # Suggest next step. README or DOWNLOAD utils.print_next_step("install", model=model)
def list_installed(args): """List the installed models.""" logger = logging.getLogger(__name__) logger.info('List installed models.') # Find installed models, ignoring special folders like R. init = utils.get_init_dir() if os.path.exists(init): msg = " in '{}'.".format(init) models = [ f for f in os.listdir(init) if os.path.isdir(os.path.join(init, f)) and f != "R" and not f.startswith('.') and not f.startswith('_') ] else: msg = ". '{}' does not exist.".format(init) models = [] models.sort() # Only list model names if args.name_only: print('\n'.join(models)) return # Report on how many models we found installed. mcnt = len(models) plural = "s" if mcnt != 1 else "" print("Found {} model{} installed{}".format(mcnt, plural, msg)) # Report on each of the installed models. if mcnt > 0: print("") invalid_models = [] for p in models: try: entry = utils.load_description(p) utils.print_meta_line(entry) except (utils.DescriptionYAMLNotFoundException, utils.MalformedYAMLException, KeyError): mcnt -= 1 invalid_models.append(p) continue # Update bash completion list. if 'commands' in entry: utils.update_command_completion(set(entry['commands'])) invalid_mcnt = len(invalid_models) if invalid_mcnt > 0: print("\nOf which {} model package{} {} broken:\n".format( invalid_mcnt, 's' if invalid_mcnt > 1 else '', 'are' if invalid_mcnt > 1 else 'is')) print(" ====> \033[31m" + ', '.join(invalid_models) + "\033[0m") print(utils.get_command_suggestion('remove')) # Suggest next step. if not args.quiet: if mcnt > 0: utils.print_next_step('installed', scenario='exist') else: utils.print_next_step('installed', scenario='none')
def list_installed(args): """List the installed models.""" logger = logging.getLogger(__name__) logger.info("List installed models.") # Find installed models, ignoring special folders like R. init = utils.get_init_dir() if os.path.exists(init): msg = f" in '{init}'." models = [ f for f in os.listdir(init) if os.path.isdir(os.path.join(init, f)) and f != "R" and not f.startswith(".") and not f.startswith("_") ] else: msg = f". '{init}' does not exist." models = [] models.sort() # Only list model names if args.name_only: print("\n".join(models)) return # Report on how many models we found installed. mcnt = len(models) plural = "s" if mcnt != 1 else "" print(f"Found {mcnt} model{plural} installed{msg}") # Report on each of the installed models. if mcnt > 0: print("") invalid_models = [] for p in models: try: entry = utils.load_description(p) utils.print_meta_line(entry) except ( utils.DescriptionYAMLNotFoundException, utils.MalformedYAMLException, KeyError, ): mcnt -= 1 invalid_models.append(p) continue # Update bash completion list. if "commands" in entry: utils.update_command_completion(set(entry["commands"])) invalid_mcnt = len(invalid_models) if invalid_mcnt > 0: print( "\nOf which {} model package{} {} broken:\n".format( invalid_mcnt, "s" if invalid_mcnt > 1 else "", "are" if invalid_mcnt > 1 else "is", ) ) print(" ====> \033[31m" + ", ".join(invalid_models) + "\033[0m") print(utils.get_command_suggestion("remove")) # Suggest next step. if not args.quiet: if mcnt > 0: utils.print_next_step("installed", scenario="exist") else: utils.print_next_step("installed", scenario="none")