import time import argparse import numpy as np import chainer from chainer.dataset import convert from chainer import serializers from chainer.datasets import get_cifar10 from chainer.datasets import get_cifar100 from utils.get_model import get_model from mllogger import MLLogger logger = MLLogger(init=False) def main(): parser = argparse.ArgumentParser(description='Chainer CIFAR example:') parser.add_argument('--model', default='c3f2') parser.add_argument('--batchsize', '-b', type=int, default=64) parser.add_argument('--learnrate', '-l', type=float, default=0.05) parser.add_argument('--epoch', '-e', type=int, default=300) parser.add_argument('--gpu', '-g', type=int, default=0) parser.add_argument('--N', type=int, default=9) parser.add_argument('--k', type=int, default=10) parser.add_argument('--out', '-o', default='result') parser.add_argument('--debug', action='store_true') parser.add_argument('--resume', '-r', default='') args = parser.parse_args()
import numpy as np import chainer from chainer import Variable, optimizers, serializers, iterators, cuda from chainer.dataset import convert from utils.generic import get_args, get_model, write_prediction from utils.dataset import SceneDatasetCV from utils.plot import plot_trajectory_eval from utils.summary_logger import SummaryLogger from utils.scheduler import AdamScheduler from utils.evaluation import Evaluator_Direct from mllogger import MLLogger logger = MLLogger(init=False) if __name__ == "__main__": """ Evaluation with Cross-Validation """ args = get_args() np.random.seed(args.seed) start = time.time() logger.initialize(args.root_dir) logger.info(vars(args)) save_dir = logger.get_savedir() logger.info("Written to {}".format(save_dir)) summary = SummaryLogger(args, logger, os.path.join(args.root_dir, "summary.csv"))
import time import json import argparse import joblib from box import Box import numpy as np import cv2 import sys sys.path.append('/home/manhh/Research/trajectory_prediction_3d_grids/fpl/') from utils.dataset import SceneDatasetForAnalysis from utils.plot import draw_line, draw_dotted_line, draw_x from mllogger import MLLogger logger = MLLogger(init=False) def get_traj_type(hip_dist): # 0: front 1: back 2: cross 3:other if hip_dist < 0.25: traj_type = 2 elif front_ratio > 0.75: traj_type = 0 elif front_ratio < 0.25: traj_type = 1 else: traj_type = 3 return traj_type
import cv2 import matplotlib.pyplot as plt from sklearn.neighbors import NearestNeighbors from sklearn.decomposition import PCA import chainer from chainer import cuda, Variable from chainer.dataset import convert from chainer import serializers from chainer.datasets import get_cifar10 from mllogger import MLLogger from models import small from models import medium logger = MLLogger() def get_color_map_nipy(gradation_num): colors = [] for idx in [int(x * 255 / gradation_num) for x in xrange(gradation_num)]: colors.append(plt.cm.nipy_spectral(idx)[0:3]) return (np.array(colors)[::-1, (2, 1, 0)] * 255).astype(np.int) def plot_nn(data, label, nn_result, nn_result2, k): colors = get_color_map_nipy(10) size = 32 canvas = np.zeros((size * 100, size * k * 2, 3), dtype=np.uint8) # (32x32を縦に配置)
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2017 Takuma Yagi <*****@*****.**> # # Distributed under terms of the MIT license. import argparse from mllogger import MLLogger from arghelper import LoadFromJson from logging import DEBUG logger = MLLogger("outputs_test", level=DEBUG, init=False) # Create outputs/yymmdd_HHMMSS/ parser = argparse.ArgumentParser(conflict_handler='resolve') parser.add_argument('--lr', type=float, default=0.1) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--dataset', type=str, default='MNIST') parser.add_argument('--decay_step', type=int, nargs='+', default=[100, 200]) parser.add_argument('--option', type=str, default=None) parser.add_argument('--cond', type=str, action=LoadFromJson) args = parser.parse_args() logger.initialize() logger.info('Logger test') logger.info(vars(args)) save_dir = logger.get_savedir() logger.save_args(args)
from torch import nn, optim from torch.autograd import Variable from models.tcn import TCN import chainer from chainer import iterators from chainer.dataset import convert from utils.generic import get_args, write_prediction from utils.dataset import SceneDatasetCV from utils.summary_logger import SummaryLogger from utils.scheduler import AdamScheduler from utils.evaluation import Evaluator from mllogger import MLLogger logger = MLLogger(init=False) def rmse(data, target): temp = (data - target)**2 rmse = torch.mean(torch.sqrt(temp[:, 0, :] + temp[:, 1, :])) return rmse if __name__ == "__main__": """ Training with Cross-Validation """ args = get_args() # Prepare logger
import joblib import numpy as np import chainer from chainer import Variable, optimizers, serializers, iterators, cuda from chainer.dataset import convert from utils.generic import get_args, get_model, write_prediction from utils.dataset import SceneDatasetCV from utils.summary_logger import SummaryLogger from utils.scheduler import AdamScheduler from utils.evaluation import Evaluator from mllogger import MLLogger logger = MLLogger(init=False) if __name__ == "__main__": """ Training with Cross-Validation """ args = get_args() # Prepare logger np.random.seed(args.seed) start = time.time() logger.initialize(args.root_dir) logger.info(vars(args)) save_dir = logger.get_savedir() logger.info("Written to {}".format(save_dir)) summary = SummaryLogger(args, logger,