Example #1
0
    def construct_density(self,
                          tol=1e-8,
                          reg_param=0.0,
                          orth_moments_tol=1e-4,
                          exact_pdf=None):
        """
        Construct approximation of the density using given moment functions.
        """
        cov_mean = qe.estimate_mean(
            qe.covariance(self._quantity, self._moments_fn))
        cov_mat = cov_mean.mean
        moments_obj, info = mlmc.tool.simple_distribution.construct_ortogonal_moments(
            self._moments_fn, cov_mat, tol=orth_moments_tol)
        moments_mean = qe.estimate_mean(qe.moments(self._quantity,
                                                   moments_obj))
        est_moments = moments_mean.mean
        est_vars = moments_mean.var

        # if exact_pdf is not None:
        #     exact_moments = mlmc.tool.simple_distribution.compute_exact_moments(moments_obj, exact_pdf)

        est_vars = np.ones(moments_obj.size)
        min_var, max_var = np.min(est_vars[1:]), np.max(est_vars[1:])
        print("min_err: {} max_err: {} ratio: {}".format(
            min_var, max_var, max_var / min_var))
        moments_data = np.stack((est_moments, est_vars), axis=1)
        distr_obj = mlmc.tool.simple_distribution.SimpleDistribution(
            moments_obj, moments_data, domain=moments_obj.domain)
        result = distr_obj.estimate_density_minimize(
            tol, reg_param)  # 0.95 two side quantile

        return distr_obj, info, result, moments_obj
Example #2
0
    def plot_bs_var_log(self, sample_vec=None):
        sample_vec = determine_sample_vec(
            n_collected_samples=self._sample_storage.get_n_collected(),
            n_levels=self._sample_storage.get_n_levels(),
            sample_vector=sample_vec)

        moments_quantity = qe.moments(self._quantity,
                                      moments_fn=self._moments_fn,
                                      mom_at_bottom=False)
        q_mean = qe.estimate_mean(moments_quantity)

        bs_plot = plot.BSplots(
            bs_n_samples=sample_vec,
            n_samples=self._sample_storage.get_n_collected(),
            n_moments=self._moments_fn.size,
            ref_level_var=q_mean.l_vars)

        bs_plot.plot_means_and_vars(
            self.mean_bs_mean[1:],
            self.mean_bs_var[1:],
            n_levels=self._sample_storage.get_n_levels())

        bs_plot.plot_bs_variances(self.mean_bs_l_vars)
        #bs_plot.plot_bs_var_log_var()

        bs_plot.plot_var_regression(self, self._sample_storage.get_n_levels(),
                                    self._moments_fn)
Example #3
0
 def dev_memory_usage_test(self):
     work_dir = "/home/martin/Documents/MLMC_quantity"
     sample_storage = SampleStorageHDF(
         file_path=os.path.join(work_dir, "mlmc_quantity_2.hdf5"))
     sample_storage.chunk_size = 1e6
     result_format = sample_storage.load_result_format()
     root_quantity = make_root_quantity(sample_storage, result_format)
     mean_root_quantity = estimate_mean(root_quantity)
Example #4
0
 def estimate_diff_vars(self, moments_fn=None):
     """
     Estimate moments_fn variance from samples
     :param moments_fn: Moment evaluation functions
     :return: (diff_variance, n_samples);
         diff_variance - shape LxR, variances of diffs of moments_fn
         n_samples -  shape L, num samples for individual levels.
     """
     moments_mean = qe.estimate_mean(qe.moments(self._quantity, moments_fn))
     return moments_mean.l_vars, moments_mean.n_samples
Example #5
0
    def estimate_covariance(self, moments_fn=None):
        """
        Use collected samples to estimate covariance matrix and variance of this estimate.
        :param moments_fn: moments function
        :return: estimate_of_moment_means, estimate_of_variance_of_estimate ; arrays of length n_moments
        """
        if moments_fn is None:
            moments_fn = self._moments_fn

        cov_mean = qe.estimate_mean(qe.covariance(self._quantity, moments_fn))
        return cov_mean.mean, cov_mean.var
Example #6
0
    def est_bootstrap(self,
                      n_subsamples=100,
                      sample_vector=None,
                      moments_fn=None):

        if moments_fn is not None:
            self._moments_fn = moments_fn
        else:
            moments_fn = self._moments_fn

        sample_vector = determine_sample_vec(
            n_collected_samples=self._sample_storage.get_n_collected(),
            n_levels=self._sample_storage.get_n_levels(),
            sample_vector=sample_vector)
        bs_mean = []
        bs_var = []
        bs_l_means = []
        bs_l_vars = []
        for i in range(n_subsamples):
            quantity_subsample = self.quantity.select(
                self.quantity.subsample(sample_vec=sample_vector))
            moments_quantity = qe.moments(quantity_subsample,
                                          moments_fn=moments_fn,
                                          mom_at_bottom=False)
            q_mean = qe.estimate_mean(moments_quantity)

            bs_mean.append(q_mean.mean)
            bs_var.append(q_mean.var)
            bs_l_means.append(q_mean.l_means)
            bs_l_vars.append(q_mean.l_vars)

        self.mean_bs_mean = np.mean(bs_mean, axis=0)
        self.mean_bs_var = np.mean(bs_var, axis=0)
        self.mean_bs_l_means = np.mean(bs_l_means, axis=0)
        self.mean_bs_l_vars = np.mean(bs_l_vars, axis=0)

        self.var_bs_mean = np.var(bs_mean, axis=0, ddof=1)
        self.var_bs_var = np.var(bs_var, axis=0, ddof=1)
        self.var_bs_l_means = np.var(bs_l_means, axis=0, ddof=1)
        self.var_bs_l_vars = np.var(bs_l_vars, axis=0, ddof=1)

        self._bs_level_mean_variance = self.var_bs_l_means * np.array(
            self._sample_storage.get_n_collected())[:, None]
Example #7
0
    def process(self):
        sample_storage = SampleStorageHDF(file_path=os.path.join(
            self.work_dir, "mlmc_{}.hdf5".format(self.n_levels)))
        sample_storage.chunk_size = 1e8
        result_format = sample_storage.load_result_format()
        root_quantity = make_root_quantity(sample_storage, result_format)

        conductivity = root_quantity['conductivity']
        time = conductivity[1]  # times: [1]
        location = time['0']  # locations: ['0']
        q_value = location[0, 0]

        # @TODO: How to estimate true_domain?
        quantile = 0.001
        true_domain = mlmc.estimator.Estimate.estimate_domain(
            q_value, sample_storage, quantile=quantile)
        moments_fn = Legendre(self.n_moments, true_domain)

        estimator = mlmc.estimator.Estimate(quantity=q_value,
                                            sample_storage=sample_storage,
                                            moments_fn=moments_fn)
        means, vars = estimator.estimate_moments(moments_fn)

        moments_quantity = moments(root_quantity,
                                   moments_fn=moments_fn,
                                   mom_at_bottom=True)
        moments_mean = estimate_mean(moments_quantity)
        conductivity_mean = moments_mean['conductivity']
        time_mean = conductivity_mean[1]  # times: [1]
        location_mean = time_mean['0']  # locations: ['0']
        values_mean = location_mean[0]  # result shape: (1,)
        value_mean = values_mean[0]
        assert value_mean.mean == 1

        # true_domain = [-10, 10]  # keep all values on the original domain
        # central_moments = Monomial(self.n_moments, true_domain, ref_domain=true_domain, mean=means())
        # central_moments_quantity = moments(root_quantity, moments_fn=central_moments, mom_at_bottom=True)
        # central_moments_mean = estimate_mean(central_moments_quantity)

        #estimator.sub_subselect(sample_vector=[10000])

        #self.process_target_var(estimator)
        self.construct_density(estimator, tol=1e-8)
Example #8
0
    def test_moments(self):
        """
        Moments estimation
        """
        np.random.seed(1234)
        n_moments = 3
        step_range = [0.5, 0.01]
        n_levels = 5

        assert step_range[0] > step_range[1]
        level_parameters = []
        for i_level in range(n_levels):
            if n_levels == 1:
                level_param = 1
            else:
                level_param = i_level / (n_levels - 1)
            level_parameters.append([
                step_range[0]**(1 - level_param) * step_range[1]**level_param
            ])

        clean = False
        sampler, simulation_factory = self._create_sampler(level_parameters,
                                                           clean=clean,
                                                           memory=False)

        distr = stats.norm()
        true_domain = distr.ppf([0.0001, 0.9999])
        # moments_fn = Legendre(n_moments, true_domain)
        moments_fn = Monomial(n_moments, true_domain)

        sampler.set_initial_n_samples([100, 80, 50, 30, 10])
        sampler.schedule_samples()
        sampler.ask_sampling_pool_for_samples()

        root_quantity = make_root_quantity(
            storage=sampler.sample_storage,
            q_specs=simulation_factory.result_format())
        root_quantity_mean = estimate_mean(root_quantity)

        estimator = new_estimator.Estimate(
            root_quantity,
            sample_storage=sampler.sample_storage,
            moments_fn=moments_fn)

        target_var = 1e-2
        sleep = 0
        add_coef = 0.1

        # New estimation according to already finished samples
        variances, n_ops = estimator.estimate_diff_vars_regression(
            sampler._n_scheduled_samples)
        n_estimated = new_estimator.estimate_n_samples_for_target_variance(
            target_var, variances, n_ops, n_levels=sampler.n_levels)

        # Loop until number of estimated samples is greater than the number of scheduled samples
        while not sampler.process_adding_samples(n_estimated, sleep, add_coef):
            # New estimation according to already finished samples
            variances, n_ops = estimator.estimate_diff_vars_regression(
                sampler._n_scheduled_samples)
            n_estimated = new_estimator.estimate_n_samples_for_target_variance(
                target_var, variances, n_ops, n_levels=sampler.n_levels)

        # Moments values are at the bottom
        moments_quantity = moments(root_quantity,
                                   moments_fn=moments_fn,
                                   mom_at_bottom=True)
        moments_mean = estimate_mean(moments_quantity)
        length_mean = moments_mean['length']
        time_mean = length_mean[1]
        location_mean = time_mean['10']
        values_mean = location_mean[0]

        assert np.allclose(values_mean.mean[:2], [1, 0.5], atol=1e-2)
        assert np.all(values_mean.var < target_var)

        new_moments = moments_quantity + moments_quantity
        new_moments_mean = estimate_mean(new_moments)
        assert np.allclose(moments_mean.mean + moments_mean.mean,
                           new_moments_mean.mean)

        # Moments values are on the surface
        moments_quantity_2 = moments(root_quantity,
                                     moments_fn=moments_fn,
                                     mom_at_bottom=False)
        moments_mean = estimate_mean(moments_quantity_2)
        first_moment = moments_mean[0]
        second_moment = moments_mean[1]
        third_moment = moments_mean[2]
        assert np.allclose(values_mean.mean, [
            first_moment.mean[0], second_moment.mean[0], third_moment.mean[0]
        ],
                           atol=1e-4)

        # Central moments
        central_root_quantity = root_quantity - root_quantity_mean.mean
        monomial_mom_fn = Monomial(n_moments,
                                   domain=true_domain,
                                   ref_domain=true_domain)
        central_moments_quantity = moments(central_root_quantity,
                                           moments_fn=monomial_mom_fn,
                                           mom_at_bottom=True)

        central_moments_mean = estimate_mean(central_moments_quantity)
        length_mean = central_moments_mean['length']
        time_mean = length_mean[1]
        location_mean = time_mean['10']
        central_value_mean = location_mean[0]

        assert np.isclose(central_value_mean.mean[0], 1, atol=1e-10)
        assert np.isclose(central_value_mean.mean[1], 0, atol=1e-2)

        # Covariance
        covariance_quantity = covariance(root_quantity,
                                         moments_fn=moments_fn,
                                         cov_at_bottom=True)
        cov_mean = estimate_mean(covariance_quantity)
        length_mean = cov_mean['length']
        time_mean = length_mean[1]
        location_mean = time_mean['10']
        cov_mean = location_mean[0]
        assert np.allclose(values_mean.mean, cov_mean.mean[:, 0])

        # Single moment
        moment_quantity = moment(root_quantity, moments_fn=moments_fn, i=0)
        moment_mean = estimate_mean(moment_quantity)
        length_mean = moment_mean['length']
        time_mean = length_mean[1]
        location_mean = time_mean['10']
        value_mean = location_mean[0]
        assert len(value_mean.mean) == 1

        iter = 1000
        chunks_means = []
        chunks_vars = []
        chunks_subsamples = []
        rm_samples = []

        for i in range(iter):
            sample_vec = [15, 10, 8, 6, 4]
            root_quantity_subsamples = root_quantity.subsample(
                sample_vec)  # out of [100, 80, 50, 30, 10]
            moments_quantity = moments(root_quantity_subsamples,
                                       moments_fn=moments_fn,
                                       mom_at_bottom=True)
            mult_chunks_moments_mean = estimate_mean(moments_quantity)
            mult_chunks_length_mean = mult_chunks_moments_mean['length']
            mult_chunks_time_mean = mult_chunks_length_mean[1]
            mult_chunks_location_mean = mult_chunks_time_mean['10']
            mult_chunks_value_mean = mult_chunks_location_mean[0]

            chunks_means.append(mult_chunks_value_mean.mean)
            chunks_vars.append(mult_chunks_value_mean.var)
            chunks_subsamples.append(mult_chunks_value_mean.n_samples)

            rm_samples.append(mult_chunks_value_mean.n_rm_samples)

        assert np.allclose(np.mean(chunks_subsamples, axis=0),
                           sample_vec,
                           rtol=0.5)
        assert np.allclose(np.mean(chunks_means, axis=0),
                           values_mean.mean,
                           atol=1e-2)
        assert np.allclose(np.mean(chunks_vars, axis=0) / iter,
                           values_mean.var,
                           atol=1e-3)
Example #9
0
    def test_functions(self):
        """
        Test numpy functions
        """
        sample_storage = Memory()
        result_format, sizes = self.fill_sample_storage(sample_storage)
        root_quantity = make_root_quantity(sample_storage, result_format)

        root_quantity_means = estimate_mean(root_quantity)

        max_root_quantity = np.max(root_quantity, axis=0, keepdims=True)
        max_means = estimate_mean(max_root_quantity)
        assert len(max_means.mean) == 1

        sin_root_quantity = np.sin(root_quantity)
        sin_means = estimate_mean(sin_root_quantity)
        assert len(sin_means.mean) == np.sum(sizes)

        round_root_quantity = np.sum(root_quantity, axis=0, keepdims=True)
        round_means = estimate_mean(round_root_quantity)
        assert len(round_means.mean) == 1

        add_root_quantity = np.add(
            root_quantity, root_quantity)  # Add arguments element-wise.
        add_root_quantity_means = estimate_mean(add_root_quantity)
        assert np.allclose(add_root_quantity_means.mean.flatten(),
                           (root_quantity_means.mean * 2))

        x = np.ones(108)
        add_one_root_quantity = np.add(
            x, root_quantity)  # Add arguments element-wise.
        add_one_root_quantity_means = estimate_mean(add_one_root_quantity)
        assert np.allclose(root_quantity_means.mean + np.ones((108, )),
                           add_one_root_quantity_means.mean.flatten())

        x = np.ones(108)
        divide_one_root_quantity = np.divide(
            x, root_quantity)  # Add arguments element-wise.
        divide_one_root_quantity_means = estimate_mean(
            divide_one_root_quantity)
        assert np.all(divide_one_root_quantity_means.mean < 1)

        # Test broadcasting
        x = np.ones(108)
        arctan2_one_root_quantity = np.arctan2(
            x, root_quantity)  # Add arguments element-wise.
        arctan2_one_root_quantity_means = estimate_mean(
            arctan2_one_root_quantity)
        assert np.all(arctan2_one_root_quantity_means.mean < 1)

        max_root_quantity = np.maximum(
            root_quantity,
            root_quantity)  # Element-wise maximum of array elements.
        max_root_quantity_means = estimate_mean(max_root_quantity)
        assert np.allclose(max_root_quantity_means.mean.flatten(),
                           root_quantity_means.mean)

        length = root_quantity['length']
        sin_length = np.sin(length)
        sin_means_length = estimate_mean(sin_length)
        assert np.allclose(
            (sin_means.mean[sizes[0]:sizes[0] + sizes[1]]).tolist(),
            sin_means_length.mean.tolist())

        q_and = np.logical_and(True, root_quantity)
        self.assertRaises(TypeError, estimate_mean, q_and)

        cache_clear()
        x = np.ones((108, 5, 2))
        self.assertRaises(ValueError, np.add, x, root_quantity)

        x = np.ones((108, 5, 2))
        self.assertRaises(ValueError, np.divide, x, root_quantity)
Example #10
0
    def test_basics(self):
        """
        Test basic quantity properties, especially indexing
        """
        work_dir = _prepare_work_dir()
        sample_storage = SampleStorageHDF(
            file_path=os.path.join(work_dir, "mlmc.hdf5"))
        result_format, sizes = self.fill_sample_storage(sample_storage)
        root_quantity = make_root_quantity(sample_storage, result_format)

        means = estimate_mean(root_quantity)
        self.assertEqual(len(means.mean), np.sum(sizes))

        quantity_add = root_quantity + root_quantity
        means_add = estimate_mean(quantity_add)
        assert np.allclose((means.mean + means.mean), means_add.mean)

        length = root_quantity['length']
        means_length = estimate_mean(length)
        assert np.allclose((means.mean[sizes[0]:sizes[0] + sizes[1]]).tolist(),
                           means_length.mean.tolist())

        length_add = quantity_add['length']
        means_length_add = estimate_mean(length_add)
        assert np.allclose(means_length_add.mean, means_length.mean * 2)

        depth = root_quantity['depth']
        means_depth = estimate_mean(depth)
        assert np.allclose((means.mean[:sizes[0]]), means_depth.mean)

        # Interpolation in time
        locations = length.time_interpolation(2.5)
        mean_interp_value = estimate_mean(locations)

        # Select position
        position = locations['10']
        mean_position_1 = estimate_mean(position)
        assert np.allclose(
            mean_interp_value.mean[:len(mean_interp_value.mean) // 2],
            mean_position_1.mean.flatten())

        # Array indexing tests
        values = position
        values_mean = estimate_mean(values)
        assert values_mean[1:2].mean.shape == (1, 3)

        values = position
        values_mean = estimate_mean(values)
        assert values_mean[1].mean.shape == (3, )

        values = position[:, 2]
        values_mean = estimate_mean(values)
        assert len(values_mean.mean) == 2

        y = position[1, 2]
        y_mean = estimate_mean(y)
        assert len(y_mean.mean) == 1

        y = position[:, :]
        y_mean = estimate_mean(y)
        assert np.allclose(y_mean.mean, mean_position_1.mean)

        y = position[:1, 1:2]
        y_mean = estimate_mean(y)
        assert len(y_mean.mean) == 1

        y = position[:2, ...]
        y_mean = estimate_mean(y)
        assert len(y_mean.mean.flatten()) == 6

        value = values[1]
        value_mean = estimate_mean(value)
        assert values_mean.mean[1] == value_mean.mean

        value = values[0]
        value_mean = estimate_mean(value)
        assert values_mean.mean[0] == value_mean.mean

        position = locations['20']
        mean_position_2 = estimate_mean(position)
        assert np.allclose(
            mean_interp_value.mean[len(mean_interp_value.mean) // 2:],
            mean_position_2.mean.flatten())

        width = root_quantity['width']
        width_locations = width.time_interpolation(1.2)
        mean_width_interp_value = estimate_mean(width_locations)

        # Select position
        position = width_locations['30']
        mean_position_1 = estimate_mean(position)
        assert np.allclose(
            mean_width_interp_value.mean[:len(mean_width_interp_value.mean) //
                                         2], mean_position_1.mean.flatten())

        position = width_locations['40']
        mean_position_2 = estimate_mean(position)
        assert np.allclose(
            mean_width_interp_value.mean[len(mean_width_interp_value.mean) //
                                         2:], mean_position_2.mean.flatten())

        quantity_add = root_quantity + root_quantity
        means_add = estimate_mean(quantity_add)
        assert np.allclose((means.mean + means.mean), means_add.mean)

        length = quantity_add['length']
        means_length = estimate_mean(length)
        assert np.allclose(
            (means_add.mean[sizes[0]:sizes[0] + sizes[1]]).tolist(),
            means_length.mean.tolist())

        width = quantity_add['width']
        means_width = estimate_mean(width)
        assert np.allclose((means_add.mean[sizes[0] + sizes[1]:sizes[0] +
                                           sizes[1] + sizes[2]]).tolist(),
                           means_width.mean.tolist())

        # Concatenate quantities
        quantity_dict = Quantity.QDict([("depth", depth), ("length", length)])
        quantity_dict_mean = estimate_mean(quantity_dict)
        assert np.allclose(
            quantity_dict_mean.mean,
            np.concatenate((means_depth.mean, means_length.mean)))

        length_concat = quantity_dict['length']
        means_length_concat = estimate_mean(length_concat)
        assert np.allclose(means_length_concat.mean, means_length.mean)
        locations = length_concat.time_interpolation(2.5)
        mean_interp_value = estimate_mean(locations)
        position = locations['10']
        mean_position_1 = estimate_mean(position)
        assert np.allclose(
            mean_interp_value.mean[:len(mean_interp_value.mean) // 2],
            mean_position_1.mean.flatten())
        values = position[:, 2]
        values_mean = estimate_mean(values)
        assert len(values_mean.mean) == 2
        y = position[1, 2]
        y_mean = estimate_mean(y)
        assert len(y_mean.mean) == 1
        y_add = np.add(5, y)
        y_add_mean = estimate_mean(y_add)
        assert np.allclose(y_add_mean.mean, y_mean.mean + 5)
        depth = quantity_dict['depth']
        means_depth_concat = estimate_mean(depth)
        assert np.allclose((means.mean[:sizes[0]]), means_depth_concat.mean)

        quantity_array = Quantity.QArray([[length, length], [length, length]])
        quantity_array_mean = estimate_mean(quantity_array)
        assert np.allclose(
            quantity_array_mean.mean.flatten(),
            np.concatenate((means_length.mean, means_length.mean,
                            means_length.mean, means_length.mean)))

        quantity_timeseries = Quantity.QTimeSeries([(0, locations),
                                                    (1, locations)])
        quantity_timeseries_mean = estimate_mean(quantity_timeseries)
        assert np.allclose(
            quantity_timeseries_mean.mean,
            np.concatenate((mean_interp_value.mean, mean_interp_value.mean)))

        quantity_field = Quantity.QField([("f1", length), ("f2", length)])
        quantity_field_mean = estimate_mean(quantity_field)
        assert np.allclose(
            quantity_field_mean.mean,
            np.concatenate((means_length.mean, means_length.mean)))
Example #11
0
    def test_condition(self):
        """
        Test select method
        """
        sample_storage = Memory()
        result_format, size = self.fill_sample_storage(sample_storage)
        root_quantity = make_root_quantity(sample_storage, result_format)

        root_quantity_mean = estimate_mean(root_quantity)

        all_root_quantity = root_quantity.select(
            np.logical_or(0 < root_quantity, root_quantity < 10))
        all_root_quantity_mean = estimate_mean(all_root_quantity)
        assert np.allclose(root_quantity_mean.mean,
                           all_root_quantity_mean.mean)

        selected_quantity = root_quantity.select(root_quantity < 0)
        with self.assertRaises(Exception):
            estimate_mean(selected_quantity)

        all_root_quantity = root_quantity.select(0 < root_quantity)
        all_root_quantity_mean = estimate_mean(all_root_quantity)
        assert np.allclose(root_quantity_mean.mean,
                           all_root_quantity_mean.mean)

        root_quantity_comp = root_quantity.select(
            root_quantity == root_quantity)
        root_quantity_comp_mean = estimate_mean(root_quantity_comp)
        assert np.allclose(root_quantity_mean.mean,
                           root_quantity_comp_mean.mean)

        root_quantity_comp = root_quantity.select(
            root_quantity < root_quantity)
        with self.assertRaises(Exception):
            estimate_mean(root_quantity_comp)

        #new_quantity = selected_quantity + root_quantity
        #self.assertRaises(AssertionError, (selected_quantity + root_quantity))

        # bound root quantity result - select the ones which meet conditions
        mask = np.logical_and(0 < root_quantity, root_quantity < 10)
        q_bounded = root_quantity.select(mask)
        mean_q_bounded = estimate_mean(q_bounded)

        q_bounded_2 = root_quantity.select(0 < root_quantity,
                                           root_quantity < 10)
        mean_q_bounded_2 = estimate_mean(q_bounded_2)
        assert np.allclose(mean_q_bounded.mean, mean_q_bounded.mean)

        quantity_add = root_quantity + root_quantity
        q_add_bounded = quantity_add.select(0 < quantity_add,
                                            quantity_add < 20)
        means_add_bounded = estimate_mean(q_add_bounded)
        assert np.allclose((means_add_bounded.mean), mean_q_bounded_2.mean * 2)

        q_bounded = root_quantity.select(10 < root_quantity,
                                         root_quantity < 20)
        mean_q_bounded = estimate_mean(q_bounded)

        q_add_bounded = quantity_add.select(20 < quantity_add,
                                            quantity_add < 40)
        means_add_bounded_2 = estimate_mean(q_add_bounded)
        assert np.allclose((means_add_bounded_2.mean), mean_q_bounded.mean * 2)

        q_add_bounded_3 = quantity_add.select(root_quantity < quantity_add)
        means_add_bounded_3 = estimate_mean(q_add_bounded_3)
        assert len(means_add_bounded_3.mean) == len(root_quantity_mean.mean)

        q_add_bounded_4 = quantity_add.select(root_quantity > quantity_add)
        with self.assertRaises(Exception):
            estimate_mean(q_add_bounded_4)

        q_add_bounded_5 = quantity_add.select(root_quantity < quantity_add,
                                              root_quantity < 10)
        means_add_bounded_5 = estimate_mean(q_add_bounded_5)
        assert len(means_add_bounded_5.mean) == len(mean_q_bounded.mean)

        length = root_quantity['length']
        mean_length = estimate_mean(length)
        quantity_lt = length.select(length < 10)  # use just first sample
        means_lt = estimate_mean(quantity_lt)
        assert len(mean_length.mean) == len(means_lt.mean)

        q_add_bounded_6 = quantity_add.select(root_quantity < quantity_add,
                                              length < 1)
        with self.assertRaises(Exception):
            estimate_mean(q_add_bounded_6)

        q_add_bounded_7 = quantity_add.select(root_quantity < quantity_add,
                                              length < 10)
        means_add_bounded_7 = estimate_mean(q_add_bounded_7)
        assert np.allclose(means_add_bounded_7.mean, means_add_bounded.mean)

        quantity_le = length.select(length <= 9)  # use just first sample
        means_le = estimate_mean(quantity_le)
        assert len(mean_length.mean) == len(means_le.mean)

        quantity_lt = length.select(length < 1)  # no sample matches condition
        with self.assertRaises(Exception):
            estimate_mean(quantity_lt)

        quantity_lt_gt = length.select(
            9 < length, length < 20)  # one sample matches condition
        means_lt_gt = estimate_mean(quantity_lt_gt)
        assert len(mean_length.mean) == len(means_lt_gt.mean)

        quantity_gt = length.select(
            10**5 < length)  # no sample matches condition
        with self.assertRaises(Exception):
            estimate_mean(quantity_gt)

        quantity_ge = length.select(
            10**5 <= length)  # no sample matches condition
        with self.assertRaises(Exception):
            estimate_mean(quantity_ge)

        quantity_eq = length.select(1 == length)
        with self.assertRaises(Exception):
            estimate_mean(quantity_eq)

        quantity_ne = length.select(-1 != length)
        means_ne = estimate_mean(quantity_ne)
        assert np.allclose((means_ne.mean).tolist(), mean_length.mean.tolist())
Example #12
0
    def test_binary_operations(self):
        """
        Test quantity binary operations
        """
        work_dir = _prepare_work_dir()
        sample_storage = SampleStorageHDF(
            file_path=os.path.join(work_dir, "mlmc.hdf5"))
        result_format, sizes = self.fill_sample_storage(sample_storage)
        root_quantity = make_root_quantity(sample_storage, result_format)
        const = 5

        means = estimate_mean(root_quantity)
        self.assertEqual(len(means.mean), np.sum(sizes))

        # Addition
        quantity_add = root_quantity + root_quantity
        means_add = estimate_mean(quantity_add)
        assert np.allclose((means.mean + means.mean), means_add.mean)

        quantity_add_const = root_quantity + const
        means_add_const = estimate_mean(quantity_add_const)
        means_add_const.mean

        quantity_add = root_quantity + root_quantity + root_quantity
        means_add = estimate_mean(quantity_add)
        assert np.allclose((means.mean + means.mean + means.mean),
                           means_add.mean)

        # Subtraction
        quantity_sub_const = root_quantity - const
        means_sub_const = estimate_mean(quantity_sub_const)
        means_sub_const.mean

        # Multiplication
        const_mult_quantity = root_quantity * const
        const_mult_mean = estimate_mean(const_mult_quantity)
        assert np.allclose((const * means.mean).tolist(),
                           const_mult_mean.mean.tolist())

        # True division
        const_div_quantity = root_quantity / const
        const_div_mean = estimate_mean(const_div_quantity)
        assert np.allclose((means.mean / const).tolist(),
                           const_div_mean.mean.tolist())

        # Mod
        const_mod_quantity = root_quantity % const
        const_mod_mean = estimate_mean(const_mod_quantity)
        const_mod_mean.mean

        # Further tests
        length = quantity_add['length']
        means_length = estimate_mean(length)
        assert np.allclose(means_add.mean[sizes[0]:sizes[0] + sizes[1]],
                           means_length.mean)

        width = quantity_add['width']
        means_width = estimate_mean(width)
        assert np.allclose(
            means_add.mean[sizes[0] + sizes[1]:sizes[0] + sizes[1] + sizes[2]],
            means_width.mean)

        quantity_add = root_quantity + root_quantity * const
        means_add = estimate_mean(quantity_add)
        assert np.allclose((means.mean + means.mean * const), means_add.mean)

        quantity_add_mult = root_quantity + root_quantity * root_quantity
        means_add = estimate_mean(quantity_add_mult)

        #### right operators ####
        # Addition
        const_add_quantity = const + root_quantity
        const_add_means = estimate_mean(const_add_quantity)
        assert np.allclose(means_add_const.mean, const_add_means.mean)

        # Subtraction
        const_sub_quantity = const - root_quantity
        const_sub_means = estimate_mean(const_sub_quantity)
        assert np.allclose(means_sub_const.mean, -const_sub_means.mean)

        # Multiplication
        const_mult_quantity = const * root_quantity
        const_mult_mean = estimate_mean(const_mult_quantity)
        assert np.allclose((const * means.mean), const_mult_mean.mean)

        # True division
        const_div_quantity = const / root_quantity
        const_div_mean = estimate_mean(const_div_quantity)
        assert len(const_div_mean.mean) == len(means.mean)

        # Mod
        const_mod_quantity = const % root_quantity
        const_mod_mean = estimate_mean(const_mod_quantity)
        assert len(const_mod_mean.mean) == len(means.mean)