def evaluator(x_train, y_train, x_val, y_val, x_test, y_test, experiment_name="", init="fixed", **kwargs): # Define model model = Sequential(loss=CrossEntropy()) model.add(Dense(nodes=10, input_dim=x_train.shape[0])) model.add(Softmax()) # Fit model model_save_path = "models/" + experiment_name + "/" + dict_to_string(kwargs) + "_" + init best_model = model.fit(X=x_train, Y=y_train, X_val=x_val, Y_val=y_val, save_path=model_save_path, **kwargs) # Plot results test_acc = best_model.get_classification_metrics(x_test, y_test)[0] subtitle = "l2_reg: " + str(kwargs["l2_reg"]) + ", lr: " + str(kwargs["lr"]) +\ ", weight_init:" + init + ", Test Acc: " + str(test_acc) best_model.plot_training_progress(show=False, save=True, name="figures/" + experiment_name + "/" + dict_to_string(kwargs) + "_" + init, subtitle=subtitle) montage(W=np.array(best_model.layers[0].weights[:, :-1]), title=subtitle, path="figures/" + experiment_name + "/weights/" + dict_to_string(kwargs) + "_" + init) # Minimizing value: validation accuracy val_acc = best_model.get_classification_metrics(x_val, y_val)[0] # Get accuracy result = {"value": val_acc, "model": best_model} # Save score and model return result
def evaluator(l2_reg): # Define model model = Sequential(loss=CrossEntropy(), metric=Accuracy()) model.add(Dense(nodes=800, input_dim=x_train.shape[0])) model.add(Relu()) model.add(Dense(nodes=10, input_dim=800)) model.add(Softmax()) ns = 800 # Define callbacks mt = MetricTracker() # Stores training evolution info lrs = LearningRateScheduler(evolution="cyclic", lr_min=1e-3, lr_max=1e-1, ns=ns) # Modifies lr while training callbacks = [mt, lrs] # Fit model iterations = 4 * ns model.fit(X=x_train, Y=y_train, X_val=x_val, Y_val=y_val, batch_size=100, iterations=iterations, l2_reg=l2_reg, shuffle_minibatch=True, callbacks=callbacks) model.save("models/yes_dropout_test") # Test model val_acc = model.get_metric_loss(x_val, y_val)[0] test_acc = model.get_metric_loss(x_test, y_test)[0] subtitle = "L2 param: " + str(l2_reg) + ", Test acc: " + str(test_acc) mt.plot_training_progress(show=True, save=True, name="figures/l2reg_optimization/" + str(l2_reg), subtitle=subtitle) print("Val accuracy:", val_acc) print("Test accuracy:", test_acc) return val_acc
return grads_w, grads_b if __name__ == "__main__": x_train, y_train, x_val, y_val, x_test, y_test = read_cifar_10(n_train=3, n_val=5, n_test=2) # x_train, y_train, x_val, y_val, x_test, y_test = read_mnist(n_train=2, n_val=5, n_test=2) # x_train, y_train, x_val, y_val, x_test, y_test = read_names(n_train=500) class_sum = np.sum(y_train, axis=1)*y_train.shape[0] class_count = np.reciprocal(class_sum, where=abs(class_sum) > 0) print(class_count) print(type(x_train[0, 0, 0])) # Define model model = Sequential(loss=CrossEntropy(), metric=Accuracy()) model.add(Conv2D(num_filters=2, kernel_shape=(4, 4), stride=3, dilation_rate=2, input_shape=x_train.shape[0:-1])) model.add(Relu()) model.add(MaxPool2D((2, 2), stride=3)) model.add(Flatten()) model.add(Dense(nodes=y_train.shape[0])) model.add(Relu()) model.add(Softmax()) print(np.min(np.abs(model.layers[0].filters))) reg = 0.0 # Fit model anal_time = time.time() model.fit(X=x_train, Y=y_train, X_val=x_val, Y_val=y_val,
a = np.divide( np.abs(analytical_grad_weight-numerical_grad_w), np.multiply(denom, (denom > _EPS)) + np.multiply(_EPS*np.ones(denom.shape), (denom <= _EPS))) np.set_printoptions(suppress=True) print(np.round(a*100,decimals=2)) av_error = np.average(a) max_error = np.max(a) print("Averaged Element-Wise Relative Error:", av_error*100, "%") print("Max Element-Wise Relative Error:", max_error*100, "%") # np.set_printoptions(suppress=False) if __name__ == "__main__": # Define model v_rnn = VanillaRNN(state_size=state_size, input_size=K, output_size=K) model = Sequential(loss=CrossEntropy(class_count=None), metric=Accuracy()) model.add(v_rnn) model.layers[0].reset_state(copy.deepcopy(state)) # print(model.layers[0].c) # Fit model l2_reg = 0.0 model.fit(X=encoded_data, epochs=1, lr = 2e-2, momentum=0.95, l2_reg=l2_reg, batcher=RnnBatcher(seq_length), callbacks=[]) print(model.layers[0].dl_dc) anal = copy.deepcopy(model.layers[0].dl_dc) model.layers[0].reset_state(copy.deepcopy(state))
from mlp.losses import CrossEntropy from mlp.layers import Conv2D, Dense, Softmax, Relu, Flatten, Dropout, MaxPool2D from mlp.callbacks import MetricTracker, BestModelSaver, LearningRateScheduler from mlp.utils import plot_confusion_matrix np.random.seed(1) if __name__ == "__main__": # Load data x_test, y_test, names = read_names_test() classes = read_names_countries() print(x_test.shape) # Load model model model = Sequential(loss=CrossEntropy()) model.load("models/names_test") # model.load("models/names_no_compensation") y_pred_prob_test = model.predict(x_test) y_pred_test = model.predict_classes(x_test) print(y_pred_prob_test) print(y_test) plot_confusion_matrix(y_pred_test, y_test, classes, "figures/conf_test") import matplotlib.pyplot as plt plt.title("Prediction Vectors") pos = plt.imshow(y_pred_prob_test.T) plt.xticks(range(len(classes)), classes, rotation=45, ha='right') plt.yticks(range(len(names)), names)
def evaluator(x_train, y_train, x_val, y_val, experiment_name="", **kwargs): print(kwargs) # Saving directories figure_file = "figures/" + experiment_name + "/" + dict_to_string(kwargs) model_file = "models/" + experiment_name + "/" + dict_to_string(kwargs) mt = MetricTracker() # Stores training evolution info (losses and metrics) # Define model d = x_train.shape[0] n1 = kwargs["n1"] # Filters of first Conv2D k1 = kwargs["k1"] # First kernel y size n2 = kwargs["n2"] # Filters of second Conv2D k2 = kwargs["k2"] # Second kernel y size batch_size = kwargs["batch_size"] try: # Define model model = Sequential(loss=CrossEntropy(class_count=None), metric=Accuracy()) model.add( Conv2D(num_filters=n1, kernel_shape=(d, k1), input_shape=x_train.shape[:-1])) model.add(Relu()) model.add(Conv2D(num_filters=n2, kernel_shape=(1, k2))) model.add(Relu()) model.add(Flatten()) model.add(Dense(nodes=y_train.shape[0])) model.add(Softmax()) # Fit model model.fit(X=x_train, Y=y_train, X_val=x_val, Y_val=y_val, batch_size=batch_size, epochs=1000, lr=1e-2, momentum=0.8, l2_reg=0.001, compensate=True, callbacks=[mt]) except Exception as e: print(e) return -1 # If configuration impossible model.save(model_file) # Write results n1 = str(n1) n2 = str(n2) k1 = str(k1) k2 = str(k2) batch_size = str(batch_size) subtitle = "n1:" + n1 + ", n2:" + n2 + ", k1:" + k1 + ", k2:" + k1 +\ ", batch_size:" + batch_size mt.plot_training_progress(show=False, save=True, name=figure_file, subtitle=subtitle) # Maximizing value: validation accuracy return model.val_metric
def evaluator(x_train, y_train, x_val, y_val, x_test, y_test, experiment_name="", **kwargs): # Saving directories figure_file = "figures/" + experiment_name + "/" + dict_to_string(kwargs) model_file = "models/" + experiment_name + "/" + dict_to_string(kwargs) # Define model model = Sequential(loss=CrossEntropy(), metric=Accuracy()) model.add(Dense(nodes=50, input_dim=x_train.shape[0])) model.add(Relu()) model.add(Dense(nodes=10, input_dim=50)) model.add(Softmax()) # Pick metaparams batch_size = 100 ns = 2 * np.floor(x_train.shape[1] / batch_size) iterations = 4 * ns # 2 cycles # Define callbacks mt = MetricTracker() # Stores training evolution info # bms = BestModelSaver(save_dir=None) lrs = LearningRateScheduler(evolution="cyclic", lr_min=1e-5, lr_max=1e-1, ns=ns) # callbacks = [mt, bms, lrs] callbacks = [mt, lrs] # Adjust logarithmic kwargs["l2_reg"] = 10**kwargs["l2_reg"] # Fit model model.fit(X=x_train, Y=y_train, X_val=x_val, Y_val=y_val, batch_size=batch_size, epochs=None, iterations=iterations, **kwargs, callbacks=callbacks) # Write results # best_model = bms.get_best_model() test_acc = model.get_metric_loss(x_test, y_test)[0] subtitle = "l2_reg: " + str( kwargs["l2_reg"]) + ", Test Acc: " + str(test_acc) mt.plot_training_progress(show=False, save=True, name=figure_file, subtitle=subtitle) # Maximizing value: validation accuracy # val_metric = bms.best_metric val_metric = model.get_metric_loss(x_val, y_val)[0] return val_metric