_HIDDEN_LAYER_DIMS = [10] _BATCH_SIZE = 32 _NUM_TRAIN_STEPS = 1000 _NUM_EVAL_STEPS = 100 _WARMUP_PROP = 0.1 _COOLDOWN_PROP = 0.1 _WARM_START_FROM = None _SAVE_SUMMARY_STEPS = 100 _SAVE_CHECKPOINT_SECS = 3600 _LEARNING_RATE = 2e-5 _NUM_GPUS = 1 pipeline_name = '-'.join([_MLP_PROJECT, _MLP_SUBPROJECT, _PIPELINE_TYPE]) pipeline_mod = '.'.join( [_MLP_SUBPROJECT, 'pipelines', _RUNNER, _PIPELINE_TYPE]) pipeline_root, model_uri, schema_uri, transform_graph_uri = pipeline_dirs( _RUN_DIR, _RUN_STR, _MLP_PROJECT, _MLP_SUBPROJECT, pipeline_name) print(transform_graph_uri) trainer_fn = train.trainer_factory( batch_size=_BATCH_SIZE, learning_rate=_LEARNING_RATE, hidden_layer_dims=_HIDDEN_LAYER_DIMS, categorical_feature_keys=_CATEGORICAL_FEATURE_KEYS, numerical_feature_keys=_NUMERICAL_FEATURE_KEYS, label_key=_LABEL_KEY, warmup_prop=_WARMUP_PROP, cooldown_prop=_COOLDOWN_PROP, # warm_start_from=_WARM_START_FROM, save_summary_steps=_SAVE_SUMMARY_STEPS, save_checkpoints_secs=_SAVE_CHECKPOINT_SECS)
full._MLP_SUBPROJECT, _PIPELINE_TYPE ]) pipeline_mod = '.'.join([ full._MLP_PROJECT, full._MLP_SUBPROJECT, 'pipelines', full._RUNNER, _PIPELINE_TYPE ]) proj_root = os.path.join(full._RUN_DIR, 'tfx', pipeline_name) pipeline_root, _, __, ___ = pipeline_dirs( full._RUN_DIR, _RUN_STR, full._MLP_PROJECT, full._MLP_SUBPROJECT, pipeline_name ) trainer_fn = train.trainer_factory( batch_size=full._BATCH_SIZE, learning_rate=_LEARNING_RATE, hidden_layer_dims=full._HIDDEN_LAYER_DIMS, categorical_feature_keys=full._CATEGORICAL_FEATURE_KEYS, numerical_feature_keys=full._NUMERICAL_FEATURE_KEYS, label_key=full._LABEL_KEY, warmup_prop=_WARMUP_PROP, cooldown_prop=_COOLDOWN_PROP, # warm_start_from=full.model_uri, save_summary_steps=_SAVE_SUMMARY_STEPS,