def main():
  training, dev = get_data()
  window_size = 5
  n_input = window_size
  n_hidden = 100
  n_output = 1
  A = 1
  num_hidden_layers = 1
  mlp = MLP(n_input, num_hidden_layers, n_hidden, n_output)
  n_epochs = 50
  step = False
  l = loss(mlp, training, window_size, window_size/2)
  print "initial loss: " + str(l)
  for j in range(0, n_epochs):
    print "epoch " + str(j)
    random.shuffle(training)
    c = 0
    for xs, y in training:
      if c == 10:
        break
      c += 1
      if step:
        train(mlp, xs, y, window_size, window_size/2)
      else:
        train(mlp, xs, y, window_size, 1)
    if step:
      error(mlp, training, window_size, window_size/2)
    else:
      error(mlp, training, window_size, 1) 
    if step:
      l = loss(mlp, training, window_size, window_size/2)
    else:
      l = loss(mlp, training, window_size, 1)
    print "loss: " + str(l)
    eta = A / float(j/float(n_epochs) + 1)
    mlp.eta = eta
    print "lr:", mlp.eta

  print "Getting Dev Accuracy..." 
  if step:
    error(mlp, dev, window_size, window_size/2)
  else:
    error(mlp, dev, window_size, 1)
def main():
  training, count_c0, count_c1 = get_data(122)
  dev, _, _ = get_data(122,True)
  series_c0, series_c1 = get_time_series()
  # A window of 240 corresponds to two hours of heart rate
  window_size = 240
  print "#class0: ", count_c0/float(window_size), "#class1:", count_c1/float(window_size)
  c1 = 0
  c0 = 0
  print "len training = " + str(len(training))
  count0 = 0
  count1 = 0
  random.shuffle(training)
  n_input = window_size
  n_hidden = 100
  n_output = 1
  num_hidden_layers = 1
  eta_c = .005
  A = .0008
  eta = eta_c
  mlp = MLP(n_input, num_hidden_layers, n_hidden, n_output, eta)
  n_epochs = 400
  step = True

  l = loss(mlp, training, window_size, window_size/2)
  print "initial loss: " + str(l)
  for j in range(0, n_epochs):
    print "epoch " + str(j)
    random.shuffle(training)
    c = 0
    grad = None
    for xs, y in training:
      if c == 10:
        break
      c += 1
      part_grad = None
      if step:
        part_grad = train(mlp, xs, y, window_size, window_size/2)
      else:
        part_grad = train(mlp, xs, y, window_size, 1)

      grad = sum_grad(grad, part_grad)
    mlp.update_weights(grad)
    if step:
      error(mlp, training, window_size, window_size/2)
    else:
      error(mlp, training, window_size, 1) 
    if step:
      l = loss(mlp, training, window_size, window_size/2)
    else:
      l = loss(mlp, training, window_size, 1)
    print "loss: " + str(l)
    eta = A / float(j/float(n_epochs) + 1)
    mlp.eta = eta
    print "lr:", mlp.eta
    if n_epochs % 10 == 0:
      if step:
        error(mlp, dev, window_size, window_size/2, True)
      else:
        error(mlp, dev, window_size, 1, True) 

  print "Getting training accuracy..." 
  if step:
    error(mlp, training, window_size, window_size/2)
  else:
    error(mlp, training, window_size, 1)
  print "Getting dev accuracy..." 
  if step:
    error(mlp, dev, window_size, window_size/2, True)
    probs(mlp, series_c0, series_c1, window_size, window_size/2)
  else:
    error(mlp, dev, window_size, 1, True)
    probs(mlp, series_c0, series_c1, window_size, 1)