def test_log_marginal_likelihood_derivative(self):

        kernel = RBFKernel(length_scale=2.1) + RBFKernel(length_scale=.345)
        theta0 = np.exp(kernel.theta)
        calc = GPRCalculator(kernel=kernel, C1=1e8, C2=1e8, opt_restarts=0)
        atoms = molecule('C2H6')
        atoms.set_calculator(EMT())

        calc.add_data(atoms)
        calc.fit()

        dt = 1e-5
        L, dL = calc.log_marginal_likelihood()
        dL_num = np.zeros_like(dL)
        for i in range(len(theta0)):
            dti = np.zeros(len(theta0))
            dti[i] = dt
            calc.kernel.theta = np.log(theta0 + dti)
            L_plus = calc.log_marginal_likelihood()[0]
            calc.kernel.theta = np.log(theta0 - dti)
            L_minus = calc.log_marginal_likelihood()[0]
            calc.kernel.theta = np.log(theta0)
            dL_num[i] = (L_plus - L_minus)/(2*dt)

        np.testing.assert_allclose(dL, dL_num)
Example #2
0
    def test_RBF_times_ConstantKernel(self):
        n = 3
        m = 4
        n_dim = 12
        X = np.random.randn(n, n_dim)
        Y = np.random.randn(m, n_dim)

        factor = 10.0

        prod_kernel = Product(RBFKernel(), ConstantKernel(constant=factor))
        ref_kernel = RBFKernel()

        K_prod, dK_prod = prod_kernel(
            X, Y, dx=True, dy=True, eval_gradient=True)
        K_ref, dK_ref1 = ref_kernel(X, Y, dx=True, dy=True, eval_gradient=True)
        # Derivative with respect to the second hyperparameter:
        dK_ref2 = np.zeros((n*(1+n_dim), m*(1+n_dim), 1))
        dK_ref2[:, :, 0] = K_ref

        K_ref *= factor
        dK_ref1 *= factor

        np.testing.assert_allclose(K_prod, K_ref)
        np.testing.assert_allclose(dK_prod[:, :, :-1], dK_ref1)
        np.testing.assert_allclose(dK_prod[:, :, -1:], dK_ref2)
Example #3
0
    def test_rbf_squared(self):
        X = np.random.randn(3, 4)
        Y = np.random.randn(3, 4)

        kernel1 = Exponentiation(RBFKernel(length_scale=2.0), exponent=4)
        kernel2 = RBFKernel(length_scale=1.0)

        K1, dK1 = kernel1(X, Y, dx=True, dy=True, eval_gradient=True)
        K2, dK2 = kernel2(X, Y, dx=True, dy=True, eval_gradient=True)

        np.testing.assert_allclose(K1, K2)
        np.testing.assert_allclose(2*dK1, dK2)
Example #4
0
    def test_comparison2product(self):
        X = np.random.randn(3, 4)
        Y = np.random.randn(3, 4)

        kernel1 = Exponentiation(RBFKernel(length_scale=1.23), exponent=2)
        kernel2 = Product(RBFKernel(length_scale=1.23),
                          RBFKernel(length_scale=1.23))

        K1 = kernel1(X, Y, dx=True, dy=True)
        K2 = kernel2(X, Y, dx=True, dy=True)

        np.testing.assert_allclose(K1, K2)
Example #5
0
    def test_versus_anisotropic_rbf(self):
        X = np.random.randn(8, 2)
        Y = np.random.randn(8, 2)

        kernel = Product(Masking(RBFKernel(length_scale=1.5), slice(0, 1)),
                         Masking(RBFKernel(length_scale=0.5), slice(1, 2)))
        ref_kernel = RBFKernel(length_scale=np.array([1.5, 0.5]))

        K, dK = kernel(X, Y, dx=True, dy=True, eval_gradient=True)
        K_ref, dK_ref = ref_kernel(X, Y, dx=True, dy=True, eval_gradient=True)

        np.testing.assert_allclose(K, K_ref)
        np.testing.assert_allclose(dK, dK_ref)
Example #6
0
    def test__mul__(self):
        X = np.random.randn(3, 4)
        Y = np.random.randn(3, 4)

        factor = 10.0

        kernel1 = RBFKernel() * factor
        kernel2 = RBFKernel() * ConstantKernel(constant=factor)
        np.testing.assert_equal(kernel1.theta, kernel2.theta)

        K1, dK1 = kernel1(X, Y, dx=True, dy=True, eval_gradient=True)
        K2, dK2 = kernel2(X, Y, dx=True, dy=True, eval_gradient=True)

        np.testing.assert_allclose(K1, K2)
        np.testing.assert_allclose(dK1, dK2)
    def test_prediction_variance(self):
        direction = np.array([1., 2., 3.])
        direction /= np.linalg.norm(direction)
        r_train = [0.7, 1.7]
        images_train = []
        for ri in r_train:
            image = Atoms(
                ['C', 'O'],
                positions=np.array([-0.5*ri*direction, 0.5*ri*direction]))
            image.set_calculator(EMT())
            images_train.append(image)

        r_test = np.linspace(0.5, 1.9, 101)
        images_test = []
        for ri in r_test:
            image = Atoms(
                ['C', 'O'],
                positions=np.array([-0.5*ri*direction, 0.5*ri*direction]))
            image.set_calculator(EMT())
            images_test.append(image)

        kernel = RBFKernel(constant=100., length_scale=.1)
        calc = GPRCalculator(kernel=kernel, C1=1E8, C2=1E8, opt_restarts=0)
        [calc.add_data(im) for im in images_train]

        calc.fit()
        prediction_var = [calc.predict_var(im)[0] for im in images_test]
        max_var = np.argmax(prediction_var)
        np.testing.assert_equal(r_test[max_var], 1.2)
Example #8
0
    def test_h2(self):
        mol = molecule('H2')
        mol.set_calculator(EMT())
        kernel = Rescaling(RBFKernel())
        ml_calc = GPRCalculator(kernel=kernel,
                                opt_restarts=1,
                                normalize_y='max+10')

        r_test = np.linspace(0.6, 2.0)
        atoms_test = [
            Atoms(['H', 'H'],
                  positions=np.array([[0, 0, 0.5 * ri], [0, 0, -0.5 * ri]]))
            for ri in r_test
        ]
        E_test = [EMT().get_potential_energy(atoms) for atoms in atoms_test]

        # import matplotlib.pyplot as plt

        def callback_after(ml_calc):
            plt.plot(r_test, E_test)
            plt.plot(r_test,
                     [ml_calc.predict(atoms)[0] for atoms in atoms_test])
            for atoms in ml_calc.atoms_train:
                xyzs = atoms.get_positions()
                r = xyzs[0, 2] - xyzs[1, 2]
                print(r)
                plt.plot(r, ml_calc.predict(atoms)[0], 'o')
            plt.show()

        opt = MLOptimizer(mol,
                          ml_calc)  #, callback_after_ml_opt=callback_after)
        opt.run()
    def test_build_diag(self):
        direction = np.array([1., 2., 3.])
        direction /= np.linalg.norm(direction)
        r_train = np.linspace(0.5, 7, 11)
        energies_train = []
        images_train = []
        for ri in r_train:
            image = Atoms(['C', 'O'],
                          positions=np.array(
                              [-0.5 * ri * direction, 0.5 * ri * direction]))
            image.set_calculator(EMT())
            energies_train.append(image.get_potential_energy())
            images_train.append(image)
        cut = 6.5

        with SymmetryFunctionSet(["C", "O"], cutoff=cut) as sfs:
            sfs.add_Artrith_Kolpak_set()

            kernel = RBFKernel(constant=100.0, length_scale=1e-2)
            calc = GAPCalculator(descriptor_set=sfs,
                                 kernel=kernel,
                                 C1=1e8,
                                 C2=1e8,
                                 opt_restarts=0)

            [calc.add_data(im) for im in images_train]
            calc.fit()
            np.testing.assert_allclose(
                calc.build_kernel_diagonal((calc.Gs_norm, calc.dGs_norm)),
                np.diag(calc.build_kernel_matrix()))
Example #10
0
    def test_comparison2product(self):
        n = 3
        m = 4
        n_dim = 12
        X = np.random.randn(n, n_dim)
        Y = np.random.randn(m, n_dim)

        factor = 10.0

        kernel1 = Rescaling(RBFKernel(), factor)
        kernel2 = Product(ConstantKernel(constant=factor), RBFKernel())

        K1, dK1 = kernel1(X, Y, dx=True, dy=True, eval_gradient=True)
        K2, dK2 = kernel2(X, Y, dx=True, dy=True, eval_gradient=True)

        np.testing.assert_allclose(K1, K2)
        np.testing.assert_allclose(dK1, dK2)
Example #11
0
    def test_butadiene(self):
        mol = molecule('butadiene')
        mol.set_calculator(EMT())
        kernel = Rescaling(RBFKernel())
        ml_calc = GPRCalculator(kernel=kernel,
                                opt_restarts=1,
                                normalize_y='max+10')

        opt = MLOptimizer(mol, ml_calc)
        opt.run()
    def test_co_kernel_derivative(self):
        direction = np.array([1., 2., 3.])
        direction /= np.linalg.norm(direction)
        atoms = Atoms(['C', 'O'],
                      positions=np.array([-0.5 * direction, 0.5 * direction]))
        atoms.set_calculator(EMT())

        def to_radius(x):
            xyzs = x.get_positions()
            r = np.sqrt(np.sum((xyzs[1, :] - xyzs[0, :])**2))
            dr = np.zeros((1, 6))
            dr[0, 0] = (xyzs[0, 0] - xyzs[1, 0]) / r
            dr[0, 1] = (xyzs[0, 1] - xyzs[1, 1]) / r
            dr[0, 2] = (xyzs[0, 2] - xyzs[1, 2]) / r
            dr[0, 3] = (xyzs[1, 0] - xyzs[0, 0]) / r
            dr[0, 4] = (xyzs[1, 1] - xyzs[0, 1]) / r
            dr[0, 5] = (xyzs[1, 2] - xyzs[0, 2]) / r
            return [r], dr

        kernel = RBFKernel(constant=100.0, length_scale=0.23)
        calc = NCGPRCalculator(input_transform=to_radius,
                               kernel=kernel,
                               C1=1e8,
                               C2=1e8,
                               opt_restarts=0)
        calc.add_data(atoms)
        K = calc.build_kernel_matrix()
        K_num = np.zeros_like(K)
        # kernel value is not tested:
        K_num[0, 0] = K[0, 0]
        x0 = atoms.get_positions()
        dx = 1e-4

        def K_fun(x, y):
            a = np.array([to_radius(Atoms(['C', 'O'], positions=x))[0]])
            b = np.array([to_radius(Atoms(['C', 'O'], positions=y))[0]])
            return calc.kernel(a, b, dx=True, dy=True)[0, 0]

        for i in range(6):
            dxi = np.zeros(6)
            dxi[i] = dx
            dxi = dxi.reshape((2, 3))
            # Test first derivative
            K_num[1 + i, 0] = self.num_dx_forth_order(K_fun, x0, x0, dxi)

            for j in range(6):
                dxj = np.zeros(6)
                dxj[j] = dx
                dxj = dxj.reshape((2, 3))
                K_num[1 + i, 1 + j] = self.num_dxdy_forth_order(
                    K_fun, x0, x0, dxi, dxj)

            # Test symmetry of derivatives
            K_num[0, 1 + i] = self.num_dy_forth_order(K_fun, x0, x0, dxi)
        np.testing.assert_allclose(K, K_num, atol=1E-5)
Example #13
0
class RescalingTest(KernelTest.KernelTest):
    kernel = Rescaling(RBFKernel(), 10.0)

    def test_comparison2product(self):
        n = 3
        m = 4
        n_dim = 12
        X = np.random.randn(n, n_dim)
        Y = np.random.randn(m, n_dim)

        factor = 10.0

        kernel1 = Rescaling(RBFKernel(), factor)
        kernel2 = Product(ConstantKernel(constant=factor), RBFKernel())

        K1, dK1 = kernel1(X, Y, dx=True, dy=True, eval_gradient=True)
        K2, dK2 = kernel2(X, Y, dx=True, dy=True, eval_gradient=True)

        np.testing.assert_allclose(K1, K2)
        np.testing.assert_allclose(dK1, dK2)

    def test__rmul__(self):
        X = np.random.randn(3, 4)
        Y = np.random.randn(3, 4)

        factor = 10.0

        kernel1 = factor * RBFKernel()
        kernel2 = ConstantKernel(constant=factor) * RBFKernel()
        np.testing.assert_equal(kernel1.theta, kernel2.theta)

        K1, dK1 = kernel1(X, Y, dx=True, dy=True, eval_gradient=True)
        K2, dK2 = kernel2(X, Y, dx=True, dy=True, eval_gradient=True)

        np.testing.assert_allclose(K1, K2)
        np.testing.assert_allclose(dK1, dK2)

    def test__mul__(self):
        X = np.random.randn(3, 4)
        Y = np.random.randn(3, 4)

        factor = 10.0

        kernel1 = RBFKernel() * factor
        kernel2 = RBFKernel() * ConstantKernel(constant=factor)
        np.testing.assert_equal(kernel1.theta, kernel2.theta)

        K1, dK1 = kernel1(X, Y, dx=True, dy=True, eval_gradient=True)
        K2, dK2 = kernel2(X, Y, dx=True, dy=True, eval_gradient=True)

        np.testing.assert_allclose(K1, K2)
        np.testing.assert_allclose(dK1, dK2)
Example #14
0
    def test_RBF_plus_ConstantKernel(self):
        n = 3
        m = 4
        n_dim = 12
        X = np.random.randn(n, n_dim)
        Y = np.random.randn(m, n_dim)

        constant = 10.0

        sum_kernel = Sum(RBFKernel(), ConstantKernel(constant=constant))
        ref_kernel = RBFKernel()

        K_sum, dK_sum = sum_kernel(X, Y, dx=True, dy=True, eval_gradient=True)
        K_ref, dK_ref1 = ref_kernel(X, Y, dx=True, dy=True, eval_gradient=True)
        K_ref[:n, :m] += constant
        # Derivative with respect to the second hyperparameter:
        dK_ref2 = np.zeros((n*(1+n_dim), m*(1+n_dim), 1))
        dK_ref2[:n, :m, 0] = 1.0

        np.testing.assert_allclose(K_sum, K_ref)
        np.testing.assert_allclose(dK_sum[:, :, :-1], dK_ref1)
        np.testing.assert_allclose(dK_sum[:, :, -1:], dK_ref2)
    def test_equivalence_to_GPR(self):
        def to_cartesian(atoms):
            xyzs = atoms.get_positions().flatten()
            return xyzs, np.eye(len(xyzs))

        gpr_calc = GPRCalculator(kernel=RBFKernel(constant=100.0,
                                                  length_scale=0.456),
                                 C1=1e8,
                                 C2=1e8,
                                 opt_restarts=1)
        ncgpr_calc = NCGPRCalculator(kernel=RBFKernel(constant=100.0,
                                                      length_scale=0.456),
                                     input_transform=to_cartesian,
                                     C1=1e8,
                                     C2=1e8,
                                     opt_restarts=1)

        atoms = molecule('cyclobutane')
        atoms.set_calculator(EMT())
        xyzs = atoms.get_positions()
        gpr_calc.add_data(atoms)
        ncgpr_calc.add_data(atoms)
        for i in range(8):
            a = atoms.copy()
            a.set_calculator(EMT())
            a.set_positions(xyzs + 0.5 * np.random.randn(*xyzs.shape))
            gpr_calc.add_data(a)
            ncgpr_calc.add_data(a)

        np.testing.assert_allclose(ncgpr_calc.build_kernel_matrix(),
                                   gpr_calc.build_kernel_matrix())

        gpr_calc.fit()
        ncgpr_calc.fit()
        np.testing.assert_allclose(ncgpr_calc.kernel.theta,
                                   gpr_calc.kernel.theta)
        np.testing.assert_allclose(ncgpr_calc.alpha, gpr_calc.alpha)
Example #16
0
class RBFKernelTest(KernelTest.KernelTest):
    kernel = RBFKernel(constant=23.4, factor=1.234, length_scale=1.321)

    def test_symmetry(self):
        atomsX = np.random.randn(1, 12)
        atomsY = np.random.randn(1, 12)
        constant = 23.4
        factor = 1.234
        length_scale = 1.321
        kernel = RBFKernel(constant=constant,
                           factor=factor,
                           length_scale=length_scale)

        K1 = kernel(atomsX, atomsY, dx=True, dy=True)
        K2 = kernel(atomsY, atomsX, dx=True, dy=True)

        N = len(atomsX)
        # K and H blocks are symmmetric
        np.testing.assert_allclose(K1[:N, :N], K2[:N, :N])
        np.testing.assert_allclose(K1[N:, N:], K2[N:, N:])
        # J and J^T are antisymmetric
        np.testing.assert_allclose(K1[:N, N:], -K2[:N, N:])
        np.testing.assert_allclose(K1[N:, :N], -K2[N:, :N])

    def test_equivalence_to_RBFKernel_with_factor(self):
        atoms = np.random.randn(10, 9)

        constant = 23.4
        factor = 1.234
        length_scale = 0.4321
        kernel_with = RBFKernel_with_factor(constant=constant,
                                            factor=factor,
                                            length_scale=length_scale)
        kernel_without = RBFKernel(constant=constant,
                                   factor=factor,
                                   length_scale=length_scale)
        K_with, dK_with = kernel_with(atoms,
                                      atoms,
                                      dx=True,
                                      dy=True,
                                      eval_gradient=True)
        K_without, dK_without = kernel_without(atoms,
                                               atoms,
                                               dx=True,
                                               dy=True,
                                               eval_gradient=True)
        np.testing.assert_allclose(K_with, K_without)
        np.testing.assert_allclose(dK_with[:, :, 1:], dK_without)
Example #17
0
    def test_symmetry(self):
        atomsX = np.random.randn(1, 12)
        atomsY = np.random.randn(1, 12)
        constant = 23.4
        factor = 1.234
        length_scale = 1.321
        kernel = RBFKernel(constant=constant,
                           factor=factor,
                           length_scale=length_scale)

        K1 = kernel(atomsX, atomsY, dx=True, dy=True)
        K2 = kernel(atomsY, atomsX, dx=True, dy=True)

        N = len(atomsX)
        # K and H blocks are symmmetric
        np.testing.assert_allclose(K1[:N, :N], K2[:N, :N])
        np.testing.assert_allclose(K1[N:, N:], K2[N:, N:])
        # J and J^T are antisymmetric
        np.testing.assert_allclose(K1[:N, N:], -K2[:N, N:])
        np.testing.assert_allclose(K1[N:, :N], -K2[N:, :N])
Example #18
0
class ExponentiationTest(KernelTest.KernelTest):
    kernel = Exponentiation(RBFKernel(), 2.0)

    def test_rbf_squared(self):
        X = np.random.randn(3, 4)
        Y = np.random.randn(3, 4)

        kernel1 = Exponentiation(RBFKernel(length_scale=2.0), exponent=4)
        kernel2 = RBFKernel(length_scale=1.0)

        K1, dK1 = kernel1(X, Y, dx=True, dy=True, eval_gradient=True)
        K2, dK2 = kernel2(X, Y, dx=True, dy=True, eval_gradient=True)

        np.testing.assert_allclose(K1, K2)
        np.testing.assert_allclose(2*dK1, dK2)

    def test_dot_product(self):
        X = np.random.randn(3, 4)
        Y = np.random.randn(3, 4)

        kernel1 = Exponentiation(DotProductKernel(exponent=2), exponent=2)
        kernel2 = DotProductKernel(exponent=4)

        K1 = kernel1(X, Y, dx=True, dy=True)
        K2 = kernel2(X, Y, dx=True, dy=True)

        np.testing.assert_allclose(K1, K2)

    def test_comparison2product(self):
        X = np.random.randn(3, 4)
        Y = np.random.randn(3, 4)

        kernel1 = Exponentiation(RBFKernel(length_scale=1.23), exponent=2)
        kernel2 = Product(RBFKernel(length_scale=1.23),
                          RBFKernel(length_scale=1.23))

        K1 = kernel1(X, Y, dx=True, dy=True)
        K2 = kernel2(X, Y, dx=True, dy=True)

        np.testing.assert_allclose(K1, K2)
Example #19
0
    def test_co_potential_curve(self):
        direction = np.array([1., 2., 3.])
        direction /= np.linalg.norm(direction)
        r_train = np.linspace(0.5, 7, 11)
        energies_train = []
        images_train = []
        for ri in r_train:
            image = Atoms(
                ['C', 'O'],
                positions=np.array([-0.5*ri*direction, 0.5*ri*direction]))
            image.set_calculator(EMT())
            energies_train.append(image.get_potential_energy())
            images_train.append(image)

        kernel = RBFKernel(constant=100.0, length_scale=1e-1)
        calc = GPRCalculator(kernel=kernel, C1=1e8, C2=1e8, opt_restarts=0)

        [calc.add_data(im) for im in images_train]
        calc.fit()
        np.testing.assert_allclose(
            energies_train,
            [calc.predict(im)[0] for im in images_train])
    def test_build_diag(self):
        direction = np.array([1., 2., 3.])
        direction /= np.linalg.norm(direction)
        r_train = np.linspace(0.5, 7, 11)
        energies_train = []
        images_train = []
        for ri in r_train:
            image = Atoms(['C', 'O'],
                          positions=np.array(
                              [-0.5 * ri * direction, 0.5 * ri * direction]))
            image.set_calculator(EMT())
            energies_train.append(image.get_potential_energy())
            images_train.append(image)

        def to_radius(x):
            xyzs = x.get_positions()
            r = np.sqrt(np.sum((xyzs[1, :] - xyzs[0, :])**2))
            dr = np.zeros((1, 6))
            dr[0, 0] = (xyzs[0, 0] - xyzs[1, 0]) / r
            dr[0, 1] = (xyzs[0, 1] - xyzs[1, 1]) / r
            dr[0, 2] = (xyzs[0, 2] - xyzs[1, 2]) / r
            dr[0, 3] = (xyzs[1, 0] - xyzs[0, 0]) / r
            dr[0, 4] = (xyzs[1, 1] - xyzs[0, 1]) / r
            dr[0, 5] = (xyzs[1, 2] - xyzs[0, 2]) / r
            return [r], dr

        kernel = RBFKernel(constant=100.0, length_scale=1e-1)
        calc = NCGPRCalculator(input_transform=to_radius,
                               kernel=kernel,
                               C1=1e8,
                               C2=1e8,
                               opt_restarts=0)

        [calc.add_data(im) for im in images_train]
        calc.fit()
        np.testing.assert_allclose(
            calc.build_kernel_diagonal((calc.q_train, calc.dq_train)),
            np.diag(calc.build_kernel_matrix()))
Example #21
0
    def test_equivalence_to_RBFKernel_with_factor(self):
        atoms = np.random.randn(10, 9)

        constant = 23.4
        factor = 1.234
        length_scale = 0.4321
        kernel_with = RBFKernel_with_factor(constant=constant,
                                            factor=factor,
                                            length_scale=length_scale)
        kernel_without = RBFKernel(constant=constant,
                                   factor=factor,
                                   length_scale=length_scale)
        K_with, dK_with = kernel_with(atoms,
                                      atoms,
                                      dx=True,
                                      dy=True,
                                      eval_gradient=True)
        K_without, dK_without = kernel_without(atoms,
                                               atoms,
                                               dx=True,
                                               dy=True,
                                               eval_gradient=True)
        np.testing.assert_allclose(K_with, K_without)
        np.testing.assert_allclose(dK_with[:, :, 1:], dK_without)
Example #22
0
class RBFtimesRBFTest(KernelTest.KernelTest):
    kernel = Product(RBFKernel(length_scale=0.8),
                     RBFKernel(length_scale=1.2))
    def test_ethane_primitives_kernel_derivative(self):
        atoms = molecule('C2H6')
        atoms.set_calculator(EMT())
        symbols = atoms.get_chemical_symbols()
        # Add gaussian noise because of numerical problem for
        # the 180 degree angle
        images = []
        np.random.seed(123)
        for _ in range(4):
            image = atoms.copy()
            image.set_positions(image.get_positions() +
                                0.05 * np.random.randn(len(atoms), 3))
            image.set_calculator(EMT())
            images.append(image)
        np.random.seed()
        atomsX = images[:-1]
        atomsY = images[-1:]
        n = len(atomsX)
        m = len(atomsY)

        # Ethane bonds:
        bonds = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 5), (1, 6), (1, 7)]
        transform, _, _ = to_primitives_factory(bonds)
        kernel = RBFKernel(constant=0.0, length_scale=3.21)
        calc = NCGPRCalculator(input_transform=transform,
                               kernel=kernel,
                               C1=1e8,
                               C2=1e8,
                               opt_restarts=0)

        [calc.add_data(a) for a in atomsX]
        qY, dqY = transform(atomsY[0])
        K = calc.build_kernel_matrix(X_star=(qY, dqY))

        K_num = np.zeros_like(K)
        # kernel value is not tested:
        K_num[:n, :m] = K[:n, :m]
        dx = 1e-4

        calc.atoms_train = [atoms]

        def K_fun(x, y):
            qx, dqx = transform(Atoms(symbols, positions=x))
            calc.q_train, calc.dq_train = [qx], [dqx]
            return calc.build_kernel_matrix(
                X_star=transform(Atoms(symbols, positions=y)))[0, 0]

        def K_dY(x, y):
            qx, dqx = transform(Atoms(symbols, positions=x))
            calc.q_train, calc.dq_train = [qx], [dqx]
            return calc.build_kernel_matrix(
                X_star=transform(Atoms(symbols, positions=y)))[0, 1:]

        for i in range(n):
            x0 = atomsX[i].get_positions()
            for j in range(m):
                y0 = atomsY[j].get_positions()
                for k in range(len(atoms) * 3):
                    dxk = np.zeros((len(atoms), 3))
                    dxk.flat[k] = dx
                    # Test first derivative
                    K_num[n + i * calc.n_dim + k,
                          j] = self.num_dx_forth_order(K_fun, x0, y0, dxk)
                    # Approximate second derivative as numerical derivative of
                    # analytical first derivative
                    K_num[n + i * calc.n_dim + k,
                          m:] = self.num_dx_forth_order(K_dY, x0, y0, dxk)
                    # Test symmetry of derivatives
                    K_num[i, m + j * calc.n_dim + k] = self.num_dy_forth_order(
                        K_fun, x0, y0, dxk)
        np.testing.assert_allclose(K, K_num, atol=1E-5)
Example #24
0
class RBFKernelAnisoTest(KernelTest.KernelTest):
    kernel = RBFKernel(constant=23.4,
                       factor=1.234,
                       length_scale=np.array([1.321] * 12))
Example #25
0
class RBFplusRBFTest(KernelTest.KernelTest):
    kernel = Sum(RBFKernel(length_scale=0.8),
                 RBFKernel(length_scale=1.2))
Example #26
0
from ase.io import read, write
from ase.constraints import FixAtoms
from ase.calculators.emt import EMT
from ase.neb import NEB
from mlpot.mlneb import run_mla_neb
from mlpot.calculators.gprcalculator import GPRCalculator
from mlpot.kernels import RBFKernel

initial = read('initial.traj')
final = read('final.traj')

constraint = FixAtoms(mask=[atom.tag > 0 for atom in initial])

images = [initial]
for i in range(5):
    image = initial.copy()
    image.set_calculator(EMT())
    image.set_constraint(constraint)
    images.append(image)

images.append(final)

neb = NEB(images)
neb.interpolate()

kernel = RBFKernel(constant=100.0, length_scale=1.0)
ml_calc = GPRCalculator(kernel=kernel, C1=1E8, C2=1E8, opt_restarts=1)

run_mla_neb(neb, ml_calc)
write('minimum_energy_path.traj', images)