Example #1
0
    def train(self, output_dir):
        with tempfile.TemporaryDirectory() as tmpdir:
            loss_fn = nn.Sequential(
                OrderedDict([
                    ("loss",
                     Apply(
                         module=Loss(),
                         in_keys=[
                             "rule_probs",
                             "token_probs",
                             "reference_probs",
                             "ground_truth_actions",
                         ],
                         out_key="action_sequence_loss",
                     )),
                    ("pick",
                     mlprogram.nn.Function(Pick("action_sequence_loss")))
                ]))
            collate = Collate(word_nl_query=CollateOptions(True, 0, -1),
                              nl_query_features=CollateOptions(True, 0, -1),
                              reference_features=CollateOptions(True, 0, -1),
                              actions=CollateOptions(True, 0, -1),
                              previous_actions=CollateOptions(True, 0, -1),
                              previous_action_rules=CollateOptions(
                                  True, 0, -1),
                              history=CollateOptions(False, 1, 0),
                              hidden_state=CollateOptions(False, 0, 0),
                              state=CollateOptions(False, 0, 0),
                              ground_truth_actions=CollateOptions(True, 0,
                                                                  -1)).collate

            qencoder, aencoder = \
                self.prepare_encoder(train_dataset, Parser())
            transform = Map(self.transform_cls(qencoder, aencoder, Parser()))
            model = self.prepare_model(qencoder, aencoder)
            optimizer = self.prepare_optimizer(model)
            train_supervised(tmpdir,
                             output_dir,
                             train_dataset,
                             model,
                             optimizer,
                             loss_fn,
                             EvaluateSynthesizer(test_dataset,
                                                 self.prepare_synthesizer(
                                                     model, qencoder,
                                                     aencoder),
                                                 {"accuracy": Accuracy()},
                                                 top_n=[5]),
                             "accuracy@5",
                             lambda x: collate(transform(x)),
                             1,
                             Epoch(100),
                             evaluation_interval=Epoch(100),
                             snapshot_interval=Epoch(100),
                             threshold=1.0)
        return qencoder, aencoder
Example #2
0
 def prepare_synthesizer(self, model, qencoder, aencoder):
     transform_input = Compose(
         OrderedDict([("extract_reference",
                       Apply(module=mlprogram.nn.Function(tokenize),
                             in_keys=[["text_query", "str"]],
                             out_key="reference")),
                      ("encode_query",
                       Apply(module=EncodeWordQuery(qencoder),
                             in_keys=["reference"],
                             out_key="word_nl_query"))]))
     transform_action_sequence = Compose(
         OrderedDict([("add_previous_action",
                       Apply(
                           module=AddPreviousActions(aencoder,
                                                     n_dependent=1),
                           in_keys=["action_sequence", "reference"],
                           constants={"train": False},
                           out_key="previous_actions",
                       )),
                      ("add_action",
                       Apply(
                           module=AddActions(aencoder, n_dependent=1),
                           in_keys=["action_sequence", "reference"],
                           constants={"train": False},
                           out_key="actions",
                       )), ("add_state", AddState("state")),
                      ("add_hidden_state", AddState("hidden_state")),
                      ("add_history", AddState("history"))]))
     collate = Collate(word_nl_query=CollateOptions(True, 0, -1),
                       nl_query_features=CollateOptions(True, 0, -1),
                       reference_features=CollateOptions(True, 0, -1),
                       actions=CollateOptions(True, 0, -1),
                       previous_actions=CollateOptions(True, 0, -1),
                       previous_action_rules=CollateOptions(True, 0, -1),
                       history=CollateOptions(False, 1, 0),
                       hidden_state=CollateOptions(False, 0, 0),
                       state=CollateOptions(False, 0, 0),
                       ground_truth_actions=CollateOptions(True, 0, -1))
     return BeamSearch(
         5, 20,
         ActionSequenceSampler(aencoder, is_subtype, transform_input,
                               transform_action_sequence, collate, model))
Example #3
0
    def test_rescore(self):
        def transform(state: str) -> Environment:
            return Environment({"x": torch.tensor([int(state)])})

        collate = Collate(x=CollateOptions(False, 0, 0))
        sampler = SamplerWithValueNetwork(MockSampler(), transform, collate,
                                          MockValueNetwork())
        zero = SamplerState(0, sampler.initialize(0))
        samples = list(sampler.batch_k_samples([zero], [3]))
        assert [
            DuplicatedSamplerState(SamplerState(0, "00"), 1),
            DuplicatedSamplerState(SamplerState(1, "01"), 1),
            DuplicatedSamplerState(SamplerState(2, "02"), 1)
        ] == samples
Example #4
0
def test_REINFORCESynthesizer():
    synthesizer = MockSynthesizer()
    synthesizer.model.model.weight.data[:] = 10.0
    optimizer = torch.optim.SGD(synthesizer.model.parameters(), 0.1)
    synthesizer = REINFORCESynthesizer(
        synthesizer=synthesizer,
        model=synthesizer.model,
        optimizer=optimizer,
        loss_fn=Loss(),
        reward=Reward(),
        collate=Collate(x=CollateOptions(False, 0, 0)).collate,
        n_rollout=1,
        device=torch.device("cpu"),
        baseline_momentum=0.9,
        max_try_num=1,
    )
    input = Environment({"x": torch.tensor(1.0)})
    for i, x in enumerate(synthesizer(input)):
        assert i < 100

        if x.output == 1:
            break
Example #5
0
    def prepare_synthesizer(self, model, qencoder, cencoder, aencoder):
        transform_input = Compose(
            OrderedDict([("extract_reference",
                          Apply(module=mlprogram.nn.Function(tokenize),
                                in_keys=[["text_query", "str"]],
                                out_key="reference")),
                         ("encode_word_query",
                          Apply(module=EncodeWordQuery(qencoder),
                                in_keys=["reference"],
                                out_key="word_nl_query")),
                         ("encode_char",
                          Apply(module=EncodeCharacterQuery(cencoder, 10),
                                in_keys=["reference"],
                                out_key="char_nl_query"))]))
        transform_action_sequence = Compose(
            OrderedDict([("add_previous_action",
                          Apply(
                              module=AddPreviousActions(aencoder),
                              in_keys=["action_sequence", "reference"],
                              constants={"train": False},
                              out_key="previous_actions",
                          )),
                         ("add_previous_action_rule",
                          Apply(
                              module=AddPreviousActionRules(
                                  aencoder,
                                  4,
                              ),
                              in_keys=["action_sequence", "reference"],
                              constants={"train": False},
                              out_key="previous_action_rules",
                          )),
                         ("add_tree",
                          Apply(
                              module=AddActionSequenceAsTree(aencoder),
                              in_keys=["action_sequence", "reference"],
                              constants={"train": False},
                              out_key=["adjacency_matrix", "depthes"],
                          )),
                         ("add_query",
                          Apply(
                              module=AddQueryForTreeGenDecoder(aencoder, 4),
                              in_keys=["action_sequence", "reference"],
                              constants={"train": False},
                              out_key="action_queries",
                          ))]))

        collate = Collate(word_nl_query=CollateOptions(True, 0, -1),
                          char_nl_query=CollateOptions(True, 0, -1),
                          nl_query_features=CollateOptions(True, 0, -1),
                          reference_features=CollateOptions(True, 0, -1),
                          previous_actions=CollateOptions(True, 0, -1),
                          previous_action_rules=CollateOptions(True, 0, -1),
                          depthes=CollateOptions(False, 1, 0),
                          adjacency_matrix=CollateOptions(False, 0, 0),
                          action_queries=CollateOptions(True, 0, -1),
                          ground_truth_actions=CollateOptions(True, 0, -1))
        return BeamSearch(
            5, 20,
            ActionSequenceSampler(aencoder, is_subtype, transform_input,
                                  transform_action_sequence, collate, model))
    def reinforce(self, train_dataset, encoder, output_dir):
        with tempfile.TemporaryDirectory() as tmpdir:
            interpreter = self.interpreter()

            collate = Collate(
                test_case_tensor=CollateOptions(False, 0, 0),
                variables_tensor=CollateOptions(True, 0, 0),
                previous_actions=CollateOptions(True, 0, -1),
                hidden_state=CollateOptions(False, 0, 0),
                state=CollateOptions(False, 0, 0),
                ground_truth_actions=CollateOptions(True, 0, -1),
                reward=CollateOptions(False, 0, 0)
            )
            collate_fn = Sequence(OrderedDict([
                ("to_episode", Map(self.to_episode(encoder,
                                                   interpreter))),
                ("flatten", Flatten()),
                ("transform", Map(self.transform(
                    encoder, interpreter, Parser()))),
                ("collate", collate.collate)
            ]))

            model = self.prepare_model(encoder)
            optimizer = self.prepare_optimizer(model)
            train_REINFORCE(
                output_dir, tmpdir, output_dir,
                train_dataset,
                self.prepare_synthesizer(model, encoder, interpreter),
                model, optimizer,
                torch.nn.Sequential(OrderedDict([
                    ("policy",
                     torch.nn.Sequential(OrderedDict([
                         ("loss",
                          Apply(
                              module=mlprogram.nn.action_sequence.Loss(
                                  reduction="none"
                              ),
                              in_keys=[
                                  "rule_probs",
                                  "token_probs",
                                  "reference_probs",
                                  "ground_truth_actions",
                              ],
                              out_key="action_sequence_loss",
                          )),
                         ("weight_by_reward",
                             Apply(
                                 [("reward", "lhs"),
                                  ("action_sequence_loss", "rhs")],
                                 "action_sequence_loss",
                                 mlprogram.nn.Function(Mul())))
                     ]))),
                    ("value",
                     torch.nn.Sequential(OrderedDict([
                         ("reshape_reward",
                             Apply(
                                 [("reward", "x")],
                                 "value_loss_target",
                                 Reshape([-1, 1]))),
                         ("BCE",
                             Apply(
                                 [("value", "input"),
                                  ("value_loss_target", "target")],
                                 "value_loss",
                                 torch.nn.BCELoss(reduction='sum'))),
                         ("reweight",
                             Apply(
                                 [("value_loss", "lhs")],
                                 "value_loss",
                                 mlprogram.nn.Function(Mul()),
                                 constants={"rhs": 1e-2})),
                     ]))),
                    ("aggregate",
                     Apply(
                         ["action_sequence_loss", "value_loss"],
                         "loss",
                         AggregatedLoss())),
                    ("normalize",
                     Apply(
                         [("loss", "lhs")],
                         "loss",
                         mlprogram.nn.Function(Div()),
                         constants={"rhs": 1})),
                    ("pick",
                     mlprogram.nn.Function(
                         Pick("loss")))
                ])),
                EvaluateSynthesizer(
                    train_dataset,
                    self.prepare_synthesizer(model, encoder, interpreter,
                                             rollout=False),
                    {}, top_n=[]),
                "generation_rate",
                metrics.use_environment(
                    metric=metrics.TestCaseResult(
                        interpreter=interpreter,
                        metric=metrics.use_environment(
                            metric=metrics.Iou(),
                            in_keys=["actual", "expected"],
                            value_key="actual",
                        )
                    ),
                    in_keys=["test_cases", "actual"],
                    value_key="actual",
                    transform=Threshold(threshold=0.9, dtype="float"),
                ),
                collate_fn,
                1, 1,
                Epoch(10), evaluation_interval=Epoch(10),
                snapshot_interval=Epoch(10),
                use_pretrained_model=True,
                use_pretrained_optimizer=True,
                threshold=1.0)
    def pretrain(self, output_dir):
        dataset = Dataset(4, 1, 2, 1, 45, seed=0)
        """
        """
        train_dataset = ListDataset([
            Environment(
                {"ground_truth": Circle(1)},
                set(["ground_truth"]),
            ),
            Environment(
                {"ground_truth": Rectangle(1, 2)},
                set(["ground_truth"]),
            ),
            Environment(
                {"ground_truth": Rectangle(1, 1)},
                set(["ground_truth"]),
            ),
            Environment(
                {"ground_truth": Rotation(45, Rectangle(1, 1))},
                set(["ground_truth"]),
            ),
            Environment(
                {"ground_truth": Translation(1, 1, Rectangle(1, 1))},
                set(["ground_truth"]),
            ),
            Environment(
                {"ground_truth": Difference(Circle(1), Circle(1))},
                set(["ground_truth"]),
            ),
            Environment(
                {"ground_truth": Union(Rectangle(1, 2), Circle(1))},
                set(["ground_truth"]),
            ),
            Environment(
                {"ground_truth": Difference(Rectangle(1, 1), Circle(1))},
                set(["ground_truth"]),
            ),
        ])

        with tempfile.TemporaryDirectory() as tmpdir:
            interpreter = self.interpreter()
            train_dataset = data_transform(
                train_dataset,
                Apply(
                    module=AddTestCases(interpreter),
                    in_keys=["ground_truth"],
                    out_key="test_cases",
                    is_out_supervision=False,
                ))
            encoder = self.prepare_encoder(dataset, Parser())

            collate = Collate(
                test_case_tensor=CollateOptions(False, 0, 0),
                variables_tensor=CollateOptions(True, 0, 0),
                previous_actions=CollateOptions(True, 0, -1),
                hidden_state=CollateOptions(False, 0, 0),
                state=CollateOptions(False, 0, 0),
                ground_truth_actions=CollateOptions(True, 0, -1)
            )
            collate_fn = Sequence(OrderedDict([
                ("to_episode", Map(self.to_episode(encoder,
                                                   interpreter))),
                ("flatten", Flatten()),
                ("transform", Map(self.transform(
                    encoder, interpreter, Parser()))),
                ("collate", collate.collate)
            ]))

            model = self.prepare_model(encoder)
            optimizer = self.prepare_optimizer(model)
            train_supervised(
                tmpdir, output_dir,
                train_dataset, model, optimizer,
                torch.nn.Sequential(OrderedDict([
                    ("loss",
                     Apply(
                         module=Loss(
                             reduction="sum",
                         ),
                         in_keys=[
                             "rule_probs",
                             "token_probs",
                             "reference_probs",
                             "ground_truth_actions",
                         ],
                         out_key="action_sequence_loss",
                     )),
                    ("normalize",  # divided by batch_size
                     Apply(
                         [("action_sequence_loss", "lhs")],
                         "loss",
                         mlprogram.nn.Function(Div()),
                         constants={"rhs": 1})),
                    ("pick",
                     mlprogram.nn.Function(
                         Pick("loss")))
                ])),
                None, "score",
                collate_fn,
                1, Epoch(100), evaluation_interval=Epoch(10),
                snapshot_interval=Epoch(100)
            )
        return encoder, train_dataset
    def prepare_synthesizer(self, model, encoder, interpreter, rollout=True):
        collate = Collate(
            test_case_tensor=CollateOptions(False, 0, 0),
            input_feature=CollateOptions(False, 0, 0),
            test_case_feature=CollateOptions(False, 0, 0),
            reference_features=CollateOptions(True, 0, 0),
            variables_tensor=CollateOptions(True, 0, 0),
            previous_actions=CollateOptions(True, 0, -1),
            hidden_state=CollateOptions(False, 0, 0),
            state=CollateOptions(False, 0, 0),
            ground_truth_actions=CollateOptions(True, 0, -1)
        )
        subsampler = ActionSequenceSampler(
            encoder, IsSubtype(),
            Sequence(OrderedDict([
                ("tinput",
                 Apply(
                     module=TransformInputs(),
                     in_keys=["test_cases"],
                     out_key="test_case_tensor",
                 )),
                ("tvariable",
                 Apply(
                     module=TransformVariables(),
                     in_keys=["variables", "test_case_tensor"],
                     out_key="variables_tensor"
                 )),
            ])),
            Compose(OrderedDict([
                ("add_previous_actions",
                 Apply(
                    module=AddPreviousActions(encoder, n_dependent=1),
                    in_keys=["action_sequence", "reference"],
                    out_key="previous_actions",
                    constants={"train": False},
                    )),
                ("add_state", AddState("state")),
                ("add_hidden_state", AddState("hidden_state"))
            ])),
            collate, model,
            rng=np.random.RandomState(0))
        subsampler = mlprogram.samplers.transform(
            subsampler,
            Parser().unparse
        )
        subsynthesizer = SMC(
            5, 1,
            subsampler,
            max_try_num=1,
            to_key=Pick("action_sequence"),
            rng=np.random.RandomState(0)
        )

        sampler = SequentialProgramSampler(
            subsynthesizer,
            Apply(
                module=TransformInputs(),
                in_keys=["test_cases"],
                out_key="test_case_tensor",
            ),
            collate,
            model.encode_input,
            interpreter=interpreter,
            expander=Expander(),
            rng=np.random.RandomState(0))
        if rollout:
            sampler = FilteredSampler(
                sampler,
                metrics.use_environment(
                    metric=metrics.TestCaseResult(
                        interpreter,
                        metric=metrics.use_environment(
                            metric=metrics.Iou(),
                            in_keys=["actual", "expected"],
                            value_key="actual",
                        )
                    ),
                    in_keys=["test_cases", "actual"],
                    value_key="actual"
                ),
                1.0
            )
            return SMC(3, 1, sampler, rng=np.random.RandomState(0),
                       to_key=Pick("interpreter_state"), max_try_num=1)
        else:
            sampler = SamplerWithValueNetwork(
                sampler,
                Sequence(OrderedDict([
                    ("tinput",
                     Apply(
                         module=TransformInputs(),
                         in_keys=["test_cases"],
                         out_key="test_case_tensor",
                     )),
                    ("tvariable",
                     Apply(
                         module=TransformVariables(),
                         in_keys=["variables", "test_case_tensor"],
                         out_key="variables_tensor"
                     )),
                ])),
                collate,
                torch.nn.Sequential(OrderedDict([
                    ("encoder", model.encoder),
                    ("value", model.value),
                    ("pick",
                     mlprogram.nn.Function(
                         Pick("value")))
                ])))

            synthesizer = SynthesizerWithTimeout(
                SMC(3, 1, sampler, rng=np.random.RandomState(0),
                    to_key=Pick("interpreter_state"),
                    max_try_num=1),
                1
            )
            return FilteredSynthesizer(
                synthesizer,
                metrics.use_environment(
                    metric=metrics.TestCaseResult(
                        interpreter,
                        metric=metrics.use_environment(
                            metric=metrics.Iou(),
                            in_keys=["actual", "expected"],
                            value_key="actual",
                        )
                    ),
                    in_keys=["test_cases", "actual"],
                    value_key="actual"
                ),
                1.0
            )
    if arg0 == arg1:
        return True
    if arg0 == "Ysub" and arg1 == "Y":
        return True
    return False


def create_encoder():
    return ActionSequenceEncoder(Samples(
        [Root2X, Root2Y, X2Y_list, Ysub2Str],
        [R, X, Y, Ysub, Y_list, Str],
        [("Str", "x"),
         ("Int", "1")]), 0)


collate = Collate(input=CollateOptions(False, 0, -1),
                  length=CollateOptions(False, 0, -1))


def create_transform_input(reference: List[Token[str, str]]):
    def transform_input(env):
        env["reference"] = reference
        env["input"] = torch.zeros((1,))
        return env
    return transform_input


def transform_action_sequence(kwargs):
    kwargs["length"] = \
        torch.tensor(len(kwargs["action_sequence"].action_sequence))
    return kwargs
Example #10
0
    def __call__(self, input, n_required_output=None):
        n_required_output = n_required_output or 1
        for _ in range(n_required_output):
            yield Result(input["value"], 0, True, 1)


@pytest.fixture
def synthesizer(model):
    return MockSynthesizer(model)


def reward(sample, output):
    return sample["value"] == output


collate = Collate(output=CollateOptions(False, 0, 0),
                  value=CollateOptions(False, 0, 0),
                  reward=CollateOptions(False, 0, 0),
                  ground_truth=CollateOptions(False, 0, 0))


class DummyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.m = nn.Linear(1, 1)

    def forward(self, kwargs):
        kwargs["value"] = self.m(kwargs["value"].float())
        return kwargs