Example #1
0
    def __init__(self, io_cfg, chain_cfg, verbose=False):
        '''
        Initializes the chain from the configuration file
        '''
        # Initialize the data loader
        io_cfg = yaml.load(io_cfg, Loader=yaml.Loader)

        # Save config, initialize output
        self.cfg = chain_cfg
        self.verbose = verbose
        self.output = {}

        # Initialize log
        log_path = chain_cfg['name'] + '_log.csv'
        print('Initialized Pi0 mass chain, log path:', log_path)
        self._log = CSVData(log_path)
        self._keys = ['event_id', 'pion_id', 'pion_mass']

        # If a network is specified, initialize the network
        self.network = False
        if chain_cfg['segment'] == 'uresnet' or chain_cfg[
                'shower_start'] == 'ppn':
            self.network = True
            with open(chain_cfg['net_cfg']) as cfg_file:
                net_cfg = yaml.load(cfg_file, Loader=yaml.Loader)
            io_cfg['model'] = net_cfg['model']
            io_cfg['trainval'] = net_cfg['trainval']

        # Pre-process configuration
        process_config(io_cfg)

        # Instantiate "handlers" (IO tools)
        self.hs = prepare(io_cfg)
        self.data_set = iter(self.hs.data_io)
Example #2
0
def main():
    cfg_file = sys.argv[1]
    if not os.path.isfile(cfg_file):
        cfg_file = os.path.join(current_directory, 'config', sys.argv[1])
    if not os.path.isfile(cfg_file):
        print(sys.argv[1], 'not found...')
        sys.exit(1)

    ckpt_dir = sys.argv[2]
    if not os.path.isdir(ckpt_dir):
        print(sys.argv[2], ' not a valid directory!')
        sys.exit(1)

    cfg = yaml.load(open(cfg_file, 'r'), Loader=yaml.Loader)

    process_config(cfg)
    log_dir = cfg['training']['log_dir']

    # loop over configuration files
    wfiles = np.array([w for w in os.listdir(ckpt_dir) if w.endswith('.ckpt')])
    wfiles = np.sort(wfiles)
    for wfile in wfiles:
        print(wfile)
        filename, file_extension = os.path.splitext(wfile)
        # set weight file
        cfg['training']['model_path'] = ckpt_dir + '/' + wfile
        # set output log
        cfg['training']['log_dir'] = log_dir + '/' + filename

        # run inference
        inference(cfg)
Example #3
0
    def __init__(self, io_cfg, chain_cfg, verbose=False):
        '''
        Initializes the chain from the configuration file
        '''
        # Initialize the data loader
        io_cfg = yaml.load(io_cfg, Loader=yaml.Loader)

        # Save config, initialize output
        self.cfg = chain_cfg
        self.verbose = verbose
        self.event = None
        self.output = {}

        # Initialize log
        log_path = chain_cfg['name'] + '_log.csv'
        print('Initialized Pi0 mass chain, log path:', log_path)
        self._log = CSVData(log_path)
        self._keys = ['event_id', 'pion_id', 'pion_mass']

        # If a network is specified, initialize the network
        self.network = False
        if chain_cfg['segment'] == 'uresnet' or chain_cfg[
                'shower_start'] == 'ppn':
            self.network = True
            with open(chain_cfg['net_cfg']) as cfg_file:
                net_cfg = yaml.load(cfg_file, Loader=yaml.Loader)
            io_cfg['model'] = net_cfg['model']
            io_cfg['trainval'] = net_cfg['trainval']

        # Initialize the fragment identifier
        self.frag_est = FragmentEstimator()

        # If a direction estimator is requested, initialize it
        if chain_cfg['shower_dir'] != 'truth':
            self.dir_est = DirectionEstimator()

        # If a clusterer is requested, initialize it
        if chain_cfg['shower_energy'] == 'cone':
            self.clusterer = ConeClusterer()

        # If a pi0 identifier is requested, initialize it
        if chain_cfg['shower_match'] == 'proximity':
            self.matcher = Pi0Matcher()

        # Pre-process configuration
        process_config(io_cfg)

        # Instantiate "handlers" (IO tools)
        self.hs = prepare(io_cfg)
        self.data_set = iter(self.hs.data_io)
Example #4
0
    def __init__(self, io_cfg, chain_cfg, verbose=False):
        '''
        Initializes the chain from the configuration file
        '''
        # Initialize the data loader
        io_cfg = yaml.load(io_cfg, Loader=yaml.Loader)

        # Save config, initialize output
        self.cfg = chain_cfg
        self.verbose = verbose
        self.event = None
        self.output = {}

        # Initialize log
        print('Initialized Pi0 reconstruction chain')
        self._log = Pi0DataLogger(chain_cfg['name'])

        # If a network is specified, initialize the network
        self.network = False
        if chain_cfg['segment'] == 'uresnet' or chain_cfg[
                'shower_start'] == 'ppn' or chain_cfg['shower_start'] == 'gnn':
            self.network = True
            with open(chain_cfg['net_cfg']) as cfg_file:
                net_cfg = yaml.load(cfg_file, Loader=yaml.Loader)
            io_cfg['model'] = net_cfg['model']
            io_cfg['trainval'] = net_cfg['trainval']

        # Initialize the fragment identifier
        if chain_cfg['shower_fragment'] == 'dbscan':
            self.frag_est = DBSCANCluster()

        # If a direction estimator is requested, initialize it
        if chain_cfg['shower_direction'] != 'label':
            self.dir_est = DirectionEstimator()

        # If a clusterer is requested, initialize it
        if chain_cfg['shower_cluster'] in ['cone', 'gnn']:
            self.clusterer = ConeClusterer()

        # If a pi0 identifier is requested, initialize it
        if chain_cfg['shower_match'] == 'proximity':
            self.matcher = Pi0Matcher()

        # Pre-process configuration
        process_config(io_cfg)

        # Instantiate "handlers" (IO tools)
        self.hs = prepare(io_cfg)
        self.data_set = iter(self.hs.data_io)
Example #5
0
def main():
    cfg_file = sys.argv[1]
    if not os.path.isfile(cfg_file):
        cfg_file = os.path.join(current_directory, 'config', sys.argv[1])
    if not os.path.isfile(cfg_file):
        print(sys.argv[1], 'not found...')
        sys.exit(1)

    cfg = yaml.load(open(cfg_file, 'r'), Loader=yaml.Loader)

    process_config(cfg)
    if cfg['training']['train']:
        train(cfg)
    else:
        inference(cfg)
def test_model_full(config_full):
    """
    Tests whether a model can be trained.
    Including parsers and trainval in the execution.

    Parameters
    ----------
    config: dict
        Generated by a fixture above, dummy config to allow networks to run.
        It is mostly empty, we rely on networks default config.
    """
    config = config_full
    model, criterion = factories.construct(config['model']['name'])
    net = model(config['model'])
    loss = criterion(config['model'])

    if not hasattr(net, "INPUT_SCHEMA"):
        pytest.skip('No test defined for network of %s' %
                    config['model']['name'])

    if not hasattr(loss, "INPUT_SCHEMA"):
        pytest.skip('No test defined for criterion of %s' %
                    config['model']['name'])

    # Setup configuration to have all necessary I/O keys
    config['iotool']['dataset']['schema'] = {}
    config['model']['network_input'] = []
    config['model']['loss_input'] = []
    for i, x in enumerate(net.INPUT_SCHEMA + loss.INPUT_SCHEMA):
        parser_name = x[0]
        parser_return_types = x[1]
        config['iotool']['dataset']['schema'][i] = [x[0]]
        for t in parser_return_types:
            config['iotool']['dataset']['schema'][i].extend(
                branch[parser_name][t])
        if i < len(net.INPUT_SCHEMA):
            config['model']['network_input'].append(i)
        else:
            config['model']['loss_input'].append(i)

    process_config(config)
    # Try opening LArCV data file
    try:
        handlers = prepare(config)
    except FileNotFoundError:
        pytest.skip('File not found to test the loader.')

    train_loop(config, handlers)
Example #7
0
def main():
    cfg_file = sys.argv[1]
    if not os.path.isfile(cfg_file):
        cfg_file = os.path.join(current_directory, 'config', sys.argv[1])
    if not os.path.isfile(cfg_file):
        print(sys.argv[1], 'not found...')
        sys.exit(1)

    cfg = yaml.load(open(cfg_file, 'r'), Loader=yaml.Loader)

    if environ.get('CUDA_VISIBLE_DEVICES') is not None and cfg['trainval']['gpus'] == '-1':
        cfg['trainval']['gpus'] = os.getenv('CUDA_VISIBLE_DEVICES')

    process_config(cfg)
    if cfg['trainval']['train']:
        train(cfg)
    else:
        inference(cfg)
Example #8
0
      seed: 0
      learning_rate: 0.0025
      gpus: '0'
      weight_prefix: '/gpfs/slac/staas/fs1/g/neutrino/qatom/gnn-models/early_stop_pi0-20.ckpt'
      iterations: 1000
      report_step: 1
      checkpoint_step: 100
      log_dir: logs/edge_gnn/edge_node_only
      model_path: ''
      train: True
      debug: False
      minibatch_size: 1
    '''

cfg = yaml.load(cfg, Loader=yaml.Loader)
process_config(cfg)
loader, cfg['data_keys'] = loader_factory(cfg)

import torch
import pickle
from train_voxel_gnn import GraphDataset

from os import listdir
from torch.utils.data import DataLoader
from mlreco.main_funcs import cycle

data_path = '/gpfs/slac/staas/fs1/g/neutrino/qatom/gnn_pi0_reco_nocompton/'
valid_data = GraphDataset(data_path, 1, data_key='00000')
valid_dataset = cycle(valid_data)

from mlreco.trainval import trainval