def _run(self, runobj: RunObject, execution: MLClientCtx): if runobj.metadata.iteration: self.store_run(runobj) meta = self._get_meta(runobj, True) job = self._generate_mpi_job(runobj, execution, meta) resp = self._submit_mpijob(job, meta.namespace) state = None timeout = int(config.submit_timeout) or 120 for _ in range(timeout): resp = self.get_job(meta.name, meta.namespace) state = self._get_job_launcher_status(resp) if resp and state: break time.sleep(1) if resp: logger.info("MpiJob {} state={}".format(meta.name, state or "unknown")) if state: state = state.lower() launcher, _ = self._get_launcher(meta.name, meta.namespace) execution.set_hostname(launcher) execution.set_state("running" if state == "active" else state) if self.kfp: writer = AsyncLogWriter(self._db_conn, runobj) status = self._get_k8s().watch( launcher, meta.namespace, writer=writer ) logger.info( "MpiJob {} finished with state {}".format(meta.name, status) ) if status == "succeeded": execution.set_state("completed") else: execution.set_state( "error", "MpiJob {} finished with state {}".format( meta.name, status ), ) else: txt = "MpiJob {} launcher pod {} state {}".format( meta.name, launcher, state ) logger.info(txt) runobj.status.status_text = txt else: txt = "MpiJob status unknown or failed, check pods: {}".format( self.get_pods(meta.name, meta.namespace) ) logger.warning(txt) runobj.status.status_text = txt if self.kfp: execution.set_state("error", txt) return None
def table_summary(context: MLClientCtx, dask_client: Union[DataItem, str], dask_key: str = 'my_dask_dataframe', target_path: str = '', name: str = 'table_summary.csv', key: str = 'table_summary') -> None: """Summarize a table :param context: the function context :param dask_client: path to the dask client scheduler json file, as string or artifact :param dask_key: key of dataframe in dask client 'datasets' attribute :param target_path: destimation folder for table summary file :param name: name of table summary file (with extension like .csv) :param key: key of table summary in artifact store """ print(context.__dict__) dask_client = Client(scheduler_file=str(dask_client)) df = dask_client.get_dataset('dask_key') print(df.head()) dscr = df.describe() filepath = os.path.join(target_path, name) dd.to_csv(dscr, filepath, single_file=True, index=False) context.log_artifact(key, target_path=filepath)
def create_classification_data(context: MLClientCtx, n_samples: int, m_features: int, k_classes: int, header: Optional[List[str]], label_column: Optional[str] = 'labels', weight: float = 0.5, random_state: int = 1, filename: Optional[str] = None, key: str = 'classifier-data', file_ext: str = 'pqt', sk_params={}): """Create a binary classification sample dataset and save. If no filename is given it will default to: 'simdata-{n_samples}X{m_features}.parquet'. Additional scikit-learn parameters can be set using **sk_params, please see https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html for more details. :param context: function context :param n_samples: number of rows/samples :param m_features: number of cols/features :param k_classes: number of classes :param header: header for features array :param label_column: column name of ground-truth series :param weight: fraction of sample negative value (ground-truth=0) :param random_state: rng seed (see https://scikit-learn.org/stable/glossary.html#term-random-state) :param filename: optional name for saving simulated data file :param key: key of data in artifact store :param file_ext: (pqt) extension for parquet file :param sk_params: additional `sklearn.datasets.make_classification` outputs filename of created data (includes path) in the artifact store. """ if not filename: name = f"simdata-{n_samples:0.0e}X{m_features}.{file_ext}".replace( "+", "") filename = os.path.join(context.artifact_path, name) else: filename = os.path.join(context.artifact_path, filename) features, labels = make_classification(n_samples=n_samples, n_features=m_features, weights=weight, n_classes=k_classes, random_state=random_state, **sk_params) # make dataframes, add column names, concatenate (X, y) X = pd.DataFrame(features) if not header: X.columns = ["feat_" + str(x) for x in range(m_features)] else: X.columns = header y = pd.DataFrame(labels, columns=[label_column]) data = pd.concat([X, y], axis=1) pq.write_table(pa.Table.from_pandas(data), filename) context.log_artifact(key, local_path=name)
def get_toy_data(context: MLClientCtx, dataset: str, params: dict = {}) -> None: """Loads a scikit-learn toy dataset for classification or regression The following datasets are available ('name' : desription): 'boston' : boston house-prices dataset (regression) 'iris' : iris dataset (classification) 'diabetes' : diabetes dataset (regression) 'digits' : digits dataset (classification) 'linnerud' : linnerud dataset (multivariate regression) 'wine' : wine dataset (classification) 'cancer' : breast cancer wisconsin dataset (classification) The scikit-learn functions return a data bunch including the following items: - data the features matrix - target the ground truth labels - DESCR a description of the dataset - feature_names header for data The features (and their names) are stored with the target labels in a DataFrame. For further details see https://scikit-learn.org/stable/datasets/index.html#toy-datasets :param context: function execution context :param dataset: name of the dataset to load :param params: params of the sklearn load_data method """ filepath = os.path.join(context.artifact_path, dataset) + '.pqt' # check to see if we haven't already downloaded the file if not os.path.isfile(filepath): artifact_path = context.artifact_path # reach into module and import the appropriate load_xxx function pkg_module = 'sklearn.datasets' fname = f'load_{dataset}' pkg_module = __import__(pkg_module, fromlist=[fname]) load_data_fn = getattr(pkg_module, fname) data = load_data_fn(**params) feature_names = data['feature_names'] # save xy = np.concatenate([data['data'], data['target'].reshape(-1, 1)], axis=1) feature_names.append('labels') df = pd.DataFrame(data=xy, columns=feature_names) df.to_parquet(filepath, engine='pyarrow', index=False) # either we just downloaded file, or it exists, log it: context.log_artifact(dataset, local_path=filepath.split('/')[-1])
def load_dataset( context: MLClientCtx, dataset: str, name: str = "", file_ext: str = "parquet", params: dict = {}, ) -> None: """Loads a scikit-learn toy dataset for classification or regression The following datasets are available ('name' : desription): 'boston' : boston house-prices dataset (regression) 'iris' : iris dataset (classification) 'diabetes' : diabetes dataset (regression) 'digits' : digits dataset (classification) 'linnerud' : linnerud dataset (multivariate regression) 'wine' : wine dataset (classification) 'breast_cancer' : breast cancer wisconsin dataset (classification) The scikit-learn functions return a data bunch including the following items: - data the features matrix - target the ground truth labels - DESCR a description of the dataset - feature_names header for data The features (and their names) are stored with the target labels in a DataFrame. For further details see https://scikit-learn.org/stable/datasets/index.html#toy-datasets :param context: function execution context :param dataset: name of the dataset to load :param name: artifact name (defaults to dataset) :param file_ext: output file_ext: parquet or csv :param params: params of the sklearn load_data method """ dataset = str(dataset) pkg_module = "sklearn.datasets" fname = f"load_{dataset}" pkg_module = __import__(pkg_module, fromlist=[fname]) load_data_fn = getattr(pkg_module, fname) data = load_data_fn(**params) feature_names = data["feature_names"] xy = np.concatenate([data["data"], data["target"].reshape(-1, 1)], axis=1) if hasattr(feature_names, "append"): feature_names.append("labels") else: feature_names = np.append(feature_names, "labels") df = pd.DataFrame(data=xy, columns=feature_names) context.log_dataset(name or dataset, df=df, format=file_ext, index=False)
def parquet_to_dask(context: MLClientCtx, parquet_url: Union[DataItem, str, Path, IO[AnyStr]], inc_cols: Optional[List[str]] = None, index_cols: Optional[List[str]] = None, shards: int = 4, threads_per: int = 4, processes: bool = False, memory_limit: str = '2GB', persist: bool = True, dask_key: str = 'my_dask_dataframe', target_path: str = '') -> None: """Load parquet dataset into dask cluster If no cluster is found loads a new one and persist the data to it. It shouold not be necessary to create a new cluster when the function is run as a 'dask' job. :param context: the function context :param parquet_url: url of the parquet file or partitioned dataset as either artifact DataItem, string, or path object (see pandas read_csv) :param inc_cols: include only these columns (very fast) :param index_cols: list of index column names (can be a long-running process) :param shards: number of workers to launch :param threads_per: number of threads per worker :param processes: """ if hasattr(context, 'dask_client'): context.logger.info('found cluster...') dask_client = context.dask_client else: context.logger.info('starting new cluster...') cluster = LocalCluster(n_workers=shards, threads_per_worker=threads_per, processes=processes, memory_limit=memory_limit) dask_client = Client(cluster) context.logger.info(dask_client) df = dd.read_parquet(parquet_url) if persist and context: df = dask_client.persist(df) dask_client.publish_dataset(dask_key=df) context.dask_client = dask_client # share the scheduler filepath = os.path.join(target_path, 'scheduler.json') dask_client.write_scheduler_file(filepath) context.log_artifact('scheduler', target_path=filepath) print(df.head())
def _generate_mpi_job(self, runobj: RunObject, execution: MLClientCtx, meta: client.V1ObjectMeta) -> dict: pod_labels = deepcopy(meta.labels) pod_labels['mlrun/job'] = meta.name # Populate mpijob object # start by populating pod templates launcher_pod_template = deepcopy(self._mpijob_pod_template) worker_pod_template = deepcopy(self._mpijob_pod_template) # configuration for both launcher and workers for pod_template in [launcher_pod_template, worker_pod_template]: if self.spec.image: self._update_container(pod_template, 'image', self.full_image_path()) self._update_container(pod_template, 'volumeMounts', self.spec.volume_mounts) extra_env = {'MLRUN_EXEC_CONFIG': runobj.to_json()} # if self.spec.rundb: # extra_env['MLRUN_DBPATH'] = self.spec.rundb extra_env = [{'name': k, 'value': v} for k, v in extra_env.items()] self._update_container(pod_template, 'env', extra_env + self.spec.env) if self.spec.image_pull_policy: self._update_container( pod_template, 'imagePullPolicy', self.spec.image_pull_policy) if self.spec.workdir: self._update_container(pod_template, 'workingDir', self.spec.workdir) if self.spec.image_pull_secret: update_in(pod_template, 'spec.imagePullSecrets', [{'name': self.spec.image_pull_secret}]) update_in(pod_template, 'metadata.labels', pod_labels) update_in(pod_template, 'spec.volumes', self.spec.volumes) # configuration for workers only # update resources only for workers because the launcher doesn't require # special resources (like GPUs, Memory, etc..) self._enrich_worker_configurations(worker_pod_template) # configuration for launcher only self._enrich_launcher_configurations(launcher_pod_template) # generate mpi job using both pod templates job = self._generate_mpi_job_template(launcher_pod_template, worker_pod_template) # update the replicas only for workers update_in(job, 'spec.mpiReplicaSpecs.Worker.replicas', self.spec.replicas or 1) if execution.get_param('slots_per_worker'): update_in(job, 'spec.slotsPerWorker', execution.get_param('slots_per_worker')) update_in(job, 'metadata', meta.to_dict()) return job
def training(context: MLClientCtx, p1: int = 1, p2: int = 2) -> None: """Train a model. :param context: The runtime context object. :param p1: A model parameter. :param p2: Another model parameter. """ # access input metadata, values, and inputs print(f'Run: {context.name} (uid={context.uid})') print(f'Params: p1={p1}, p2={p2}') context.logger.info('started training') # <insert training code here> # log the run results (scalar values) context.log_result('accuracy', p1 * 2) context.log_result('loss', p1 * 3) # add a lable/tag to this run context.set_label('category', 'tests') # log a simple artifact + label the artifact # If you want to upload a local file to the artifact repo add src_path=<local-path> context.log_artifact('model', body=b'abc is 123', local_path='model.txt', labels={'framework': 'tfkeras'})
def validation(context: MLClientCtx, model: DataItem) -> None: """Model validation. Dummy validation function. :param context: The runtime context object. :param model: The extimated model object. """ # access input metadata, values, files, and secrets (passwords) print(f'Run: {context.name} (uid={context.uid})') print(f'file - {model.url}:\n{model.get()}\n') context.logger.info('started validation') context.log_artifact('validation', body=b'<b> validated </b>', format='html')
def load_dask( context: MLClientCtx, src_data: DataItem, dask_key: str = "dask_key", inc_cols: Optional[List[str]] = None, index_cols: Optional[List[str]] = None, dask_persist: bool = True, refresh_data: bool = True, scheduler_key: str = "scheduler" ) -> None: """Load dataset into an existing dask cluster dask jobs define the dask client parameters at the job level, this method will raise an error if no client is detected. :param context: the function context :param src_data: url of the data file or partitioned dataset as either artifact DataItem, string, or path object (similar to pandas read_csv) :param dask_key: destination key of data on dask cluster and artifact store :param inc_cols: include only these columns (very fast) :param index_cols: list of index column names (can be a long-running process) :param dask_persist: (True) should the data be persisted (through the `client.persist` op) :param refresh_data: (False) if the dask_key already exists in the dask cluster, this will raise an Exception. Set to True to replace the existing cluster data. :param scheduler_key: (scheduler) the dask scheduler configuration, json also logged as an artifact """ if hasattr(context, "dask_client"): dask_client = context.dask_client else: raise Exception("a dask client was not found in the execution context") df = src_data.as_df(df_module=dd) if dask_persist: df = dask_client.persist(df) if dask_client.datasets and dask_key in dask_client.datasets: dask_client.unpublish_dataset(dask_key) dask_client.publish_dataset(df, name=dask_key) if context: context.dask_client = dask_client # share the scheduler, whether data is persisted or not dask_client.write_scheduler_file(scheduler_key + ".json") # we don't use log_dataset here until it can take into account # dask origin and apply dask describe. context.log_artifact(scheduler_key, local_path=scheduler_key + ".json")
def gen_class_data(context: MLClientCtx, n_samples: int, m_features: int, k_classes: int, header: Optional[List[str]], label_column: Optional[str] = "labels", weight: float = 0.5, random_state: int = 1, key: str = "classifier-data", file_ext: str = "parquet", sk_params={}): """Create a binary classification sample dataset and save. If no filename is given it will default to: "simdata-{n_samples}X{m_features}.parquet". Additional scikit-learn parameters can be set using **sk_params, please see https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html for more details. :param context: function context :param n_samples: number of rows/samples :param m_features: number of cols/features :param k_classes: number of classes :param header: header for features array :param label_column: column name of ground-truth series :param weight: fraction of sample negative value (ground-truth=0) :param random_state: rng seed (see https://scikit-learn.org/stable/glossary.html#term-random-state) :param key: key of data in artifact store :param file_ext: (pqt) extension for parquet file :param sk_params: additional parameters for `sklearn.datasets.make_classification` """ features, labels = make_classification(n_samples=n_samples, n_features=m_features, weights=weight, n_classes=k_classes, random_state=random_state, **sk_params) # make dataframes, add column names, concatenate (X, y) X = pd.DataFrame(features) if not header: X.columns = ["feat_" + str(x) for x in range(m_features)] else: X.columns = header y = pd.DataFrame(labels, columns=[label_column]) data = pd.concat([X, y], axis=1) context.log_dataset(key, df=data, format=file_ext, index=False)
def learning_curves(context: MLClientCtx, results: dict, figsz: Tuple[int, int] = (10, 10), plots_dest: str = "plots") -> None: """plot xgb learning curves this will also log a model's learning curves """ plt.clf() plt.figure(figsize=figsz) plt.plot(results["train"]["my_rmsle"], label="train-my-rmsle") plt.plot(results["valid"]["my_rmsle"], label="valid-my-rmsle") plt.title(f"learning curves") plt.legend() context.log_artifact(PlotArtifact(f"learning-curves", body=plt.gcf()), local_path=f"{plots_dest}/learning-curves.html")
def pandas_profiling_report( context: MLClientCtx, data: DataItem, ) -> None: """Create a Pandas Profiling Report for a dataset. :param context: the function context :param data: Dataset to create report for """ df = data.as_df() profile = df.profile_report(title="Pandas Profiling Report") context.log_artifact( "Pandas Profiling Report", body=profile.to_html(), local_path="pandas_profiling_report.html", )
def sql_to_file( context: MLClientCtx, sql_query: str, database_url: str, file_ext: str = "parquet", ) -> None: """SQL Ingest - Ingest data using SQL query :param context: the function context :param sql_query: the sql query used to retrieve the data :param database_url: database connection URL :param file_ext: ("parquet") format for result file """ engine = create_engine(database_url) df = pd.read_sql(sql_query, engine) context.log_dataset( "query result", df=df, format=file_ext, artifact_path=context.artifact_subpath("data"), )
def validation(context: MLClientCtx, model: DataItem) -> None: """Model validation. Dummy validation function. :param context: The runtime context object. :param model: The extimated model object. """ # access input metadata, values, files, and secrets (passwords) print(f"Run: {context.name} (uid={context.uid})") context.logger.info("started validation") # get the model file, class (metadata), and extra_data (dict of key: DataItem) model_file, model_obj, _ = get_model(model) # update model object elements and data update_model(model_obj, parameters={"one_more": 5}) print(f"path to local copy of model file - {model_file}") print("parameters:", model_obj.parameters) print("metrics:", model_obj.metrics) context.log_artifact("validation", body=b"<b> validated </b>", format="html")
def plot_confusion_matrix(context: MLClientCtx, labels, predictions, key: str = "confusion_matrix", plots_dir: str = "plots", colormap: str = "Blues", fmt: str = "png", sample_weight=None): """Create a confusion matrix. Plot and save a confusion matrix using test data from a modelline step. See https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html TODO: fix label alignment TODO: consider using another packaged version TODO: refactor to take params dict for plot options :param context: function context :param labels: validation data ground-truth labels :param predictions: validation data predictions :param key: str :param plots_dir: relative path of plots in artifact store :param colormap: colourmap for confusion matrix :param fmt: plot format :param sample_weight: sample weights """ _gcf_clear(plt) cm = metrics.confusion_matrix(labels, predictions, sample_weight=None) sns.heatmap(cm, annot=True, cmap=colormap, square=True) fig = plt.gcf() fname = f"{plots_dir}/{key}.{fmt}" fig.savefig(os.path.join(context.artifact_path, fname)) context.log_artifact(PlotArtifact(key, body=fig), local_path=fname)
def open_archive( context: MLClientCtx, archive_url: DataItem, subdir: str = "content", key: str = "content", target_path: str = None, ): """Open a file/object archive into a target directory Currently supports zip and tar.gz :param context: function execution context :param archive_url: url of archive file :param subdir: path within artifact store where extracted files are stored :param key: key of archive contents in artifact store :param target_path: file system path to store extracted files (use either this or subdir) """ os.makedirs(target_path or subdir, exist_ok=True) archive_url = archive_url.local() if archive_url.endswith("gz"): with tarfile.open(archive_url, mode="r|gz") as ref: ref.extractall(target_path or subdir) elif archive_url.endswith("zip"): with zipfile.ZipFile(archive_url, "r") as ref: ref.extractall(target_path or subdir) else: raise ValueError(f"unsupported archive type in {archive_url}") kwargs = {} if target_path: kwargs = {"target_path": target_path} else: kwargs = {"local_path": subdir} context.log_artifact(key, **kwargs)
def send_email( context: MLClientCtx, sender: str, to: str, subject: str, content: str = "", server_addr: str = None, attachments: List[str] = [], ) -> None: """Send an email. :param sender: Sender email address :param context: The function context :param to: Email address of mail recipient :param subject: Email subject :param content: Optional mail text :param server_addr: Address of SMTP server to use. Use format <addr>:<port> :param attachments: List of attachments to add. """ email_user = context.get_secret("SMTP_USER") email_pass = context.get_secret("SMTP_PASSWORD") if email_user is None or email_pass is None: context.logger.error( "Missing sender email or password - cannot send email.") return if server_addr is None: context.logger.error("Server not specified - cannot send email.") return msg = EmailMessage() msg["From"] = sender msg["Subject"] = subject msg["To"] = to msg.set_content(content) for filename in attachments: context.logger.info(f"Looking at attachment: {filename}") if not os.path.isfile(filename): context.logger.warning(f"Filename does not exist {filename}") continue ctype, encoding = mimetypes.guess_type(filename) if ctype is None or encoding is not None: ctype = "application/octet-stream" maintype, subtype = ctype.split("/", 1) with open(filename, "rb") as fp: msg.add_attachment( fp.read(), maintype=maintype, subtype=subtype, filename=os.path.basename(filename), ) context.logger.info( f"Added attachment: Filename: {filename}, of mimetype: {maintype}, {subtype}" ) try: s = smtplib.SMTP(host=server_addr) s.starttls() s.login(email_user, email_pass) s.send_message(msg) context.logger.info("Email sent successfully.") except smtplib.SMTPException as exp: context.logger.error(f"SMTP exception caught in SMTP code: {exp}") except ConnectionError as ce: context.logger.error(f"Connection error caught in SMTP code: {ce}")
def train_model( context: MLClientCtx, model_pkg_class: str, dataset: DataItem, label_column: str = "labels", encode_cols: List[str] = [], sample: int = -1, test_size: float = 0.30, train_val_split: float = 0.75, test_set_key: str = "test_set", model_evaluator=None, models_dest: str = "", plots_dest: str = "plots", file_ext: str = "parquet", model_pkg_file: str = "", random_state: int = 1, ) -> None: """train a classifier An optional cutom model evaluator can be supplied that should have the signature: `my_custom_evaluator(context, xvalid, yvalid, model)` and return a dictionary of scalar "results", a "plots" keys with a list of PlotArtifacts, and and "tables" key containing a returned list of TableArtifacts. :param context: the function context :param model_pkg_class: the model to train, e.g, "sklearn.neural_networks.MLPClassifier", or json model config :param dataset: ("data") name of raw data file :param label_column: ground-truth (y) labels :param encode_cols: dictionary of names and prefixes for columns that are to hot be encoded. :param sample: Selects the first n rows, or select a sample starting from the first. If negative <-1, select a random sample :param test_size: (0.05) test set size :param train_val_split: (0.75) Once the test set has been removed the training set gets this proportion. :param test_set_key: key of held out data in artifact store :param model_evaluator: (None) a custom model evaluator can be specified :param models_dest: ("") models subfolder on artifact path :param plots_dest: plot subfolder on artifact path :param file_ext: ("parquet") format for test_set_key hold out data :param random_state: (1) sklearn rng seed """ models_dest = models_dest or "model" raw, labels, header = get_sample(dataset, sample, label_column) if encode_cols: raw = pd.get_dummies(raw, columns=list(encode_cols.keys()), prefix=list(encode_cols.values()), drop_first=True) (xtrain, ytrain), (xvalid, yvalid), (xtest, ytest) = get_splits( raw, labels, 3, test_size, 1 - train_val_split, random_state) context.log_dataset(test_set_key, df=pd.concat([xtest, ytest.to_frame()], axis=1), format=file_ext, index=False, labels={"data-type": "held-out"}, artifact_path=context.artifact_subpath('data')) model_config = gen_sklearn_model(model_pkg_class, context.parameters.items()) model_config["FIT"].update({"X": xtrain, "y": ytrain.values}) ClassifierClass = create_class(model_config["META"]["class"]) model = ClassifierClass(**model_config["CLASS"]) model.fit(**model_config["FIT"]) artifact_path = context.artifact_subpath(models_dest) plots_path = context.artifact_subpath(models_dest, plots_dest) if model_evaluator: eval_metrics = model_evaluator(context, xvalid, yvalid, model, plots_artifact_path=plots_path) else: eval_metrics = eval_model_v2(context, xvalid, yvalid, model, plots_artifact_path=plots_path) context.set_label('class', model_pkg_class) context.log_model("model", body=dumps(model), artifact_path=artifact_path, extra_data=eval_metrics, model_file="model.pkl", metrics=context.results, labels={"class": model_pkg_class})
def arc_to_parquet(context: MLClientCtx, archive_url: DataItem, header: List[str] = [None], chunksize: int = 0, dtype=None, encoding: str = "latin-1", key: str = "data", dataset: str = "None", part_cols=[], file_ext: str = "parquet", index: bool = False, refresh_data: bool = False, stats: bool = False) -> None: """Open a file/object archive and save as a parquet file or dataset Notes ----- * this function is typically for large files, please be sure to check all settings * partitioning requires precise specification of column types. * the archive_url can be any file readable by pandas read_csv, which includes tar files * if the `dataset` parameter is not empty, then a partitioned dataset will be created instead of a single file in the folder `dataset` * if a key exists already then it will not be re-acquired unless the `refresh_data` param is set to `True`. This is in case the original file is corrupt, or a refresh is required. :param context: the function context :param archive_url: MLRun data input (DataItem object) :param chunksize: (0) when > 0, row size (chunk) to retrieve per iteration :param dtype destination data type of specified columns :param encoding ("latin-8") file encoding :param key: key in artifact store (when log_data=True) :param dataset: (None) if not None then "target_path/dataset" is folder for partitioned files :param part_cols: ([]) list of partitioning columns :param file_ext: (parquet) csv/parquet file extension :param index: (False) pandas save index option :param refresh_data: (False) overwrite existing data at that location :param stats: (None) calculate table stats when logging artifact """ base_path = context.artifact_path os.makedirs(base_path, exist_ok=True) archive_url = archive_url.local() if dataset is not None: dest_path = os.path.join(base_path, dataset) exists = os.path.isdir(dest_path) else: dest_path = os.path.join(base_path, key + f".{file_ext}") exists = os.path.isfile(dest_path) if not exists: context.logger.info("destination file does not exist, downloading") if chunksize > 0: header = _chunk_readwrite(archive_url, dest_path, chunksize, encoding, dtype, dataset) context.log_dataset(key=key, stats=stats, format='parquet', target_path=dest_path) else: df = pd.read_csv(archive_url) context.log_dataset(key, df=df, format=file_ext, index=index) else: context.logger.info("destination file already exists, nothing done")
def summarize( context: MLClientCtx, table: DataItem, label_column: str = None, class_labels: List[str] = [], plot_hist: bool = True, plots_dest: str = "plots", update_dataset=False, ) -> None: """Summarize a table :param context: the function context :param table: MLRun input pointing to pandas dataframe (csv/parquet file path) :param label_column: ground truth column label :param class_labels: label for each class in tables and plots :param plot_hist: (True) set this to False for large tables :param plots_dest: destination folder of summary plots (relative to artifact_path) :param update_dataset: when the table is a registered dataset update the charts in-place """ df = table.as_df() header = df.columns.values extra_data = {} try: gcf_clear(plt) snsplt = sns.pairplot(df, hue=label_column) # , diag_kws={"bw": 1.5}) extra_data["histograms"] = context.log_artifact( PlotArtifact("histograms", body=plt.gcf()), local_path=f"{plots_dest}/hist.html", db_key=False, ) except Exception as e: context.logger.error( f"Failed to create pairplot histograms due to: {e}") try: gcf_clear(plt) plot_cols = 3 plot_rows = int((len(header) - 1) / plot_cols) + 1 fig, ax = plt.subplots(plot_rows, plot_cols, figsize=(15, 4)) fig.tight_layout(pad=2.0) for i in range(plot_rows * plot_cols): if i < len(header): sns.violinplot( x=df[header[i]], ax=ax[int(i / plot_cols)][i % plot_cols], orient="h", width=0.7, inner="quartile", ) else: fig.delaxes(ax[int(i / plot_cols)][i % plot_cols]) i += 1 extra_data["violin"] = context.log_artifact( PlotArtifact("violin", body=plt.gcf(), title="Violin Plot"), local_path=f"{plots_dest}/violin.html", db_key=False, ) except Exception as e: context.logger.warn( f"Failed to create violin distribution plots due to: {e}") if label_column: labels = df.pop(label_column) imbtable = labels.value_counts(normalize=True).sort_index() try: gcf_clear(plt) balancebar = imbtable.plot(kind="bar", title="class imbalance - labels") balancebar.set_xlabel("class") balancebar.set_ylabel("proportion of total") extra_data["imbalance"] = context.log_artifact( PlotArtifact("imbalance", body=plt.gcf()), local_path=f"{plots_dest}/imbalance.html", ) except Exception as e: context.logger.warn( f"Failed to create class imbalance plot due to: {e}") context.log_artifact( TableArtifact("imbalance-weights-vec", df=pd.DataFrame({"weights": imbtable})), local_path=f"{plots_dest}/imbalance-weights-vec.csv", db_key=False, ) tblcorr = df.corr() mask = np.zeros_like(tblcorr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True dfcorr = pd.DataFrame(data=tblcorr, columns=header, index=header) dfcorr = dfcorr[ np.arange(dfcorr.shape[0])[:, None] > np.arange(dfcorr.shape[1])] context.log_artifact( TableArtifact("correlation-matrix", df=tblcorr, visible=True), local_path=f"{plots_dest}/correlation-matrix.csv", db_key=False, ) try: gcf_clear(plt) ax = plt.axes() sns.heatmap(tblcorr, ax=ax, mask=mask, annot=False, cmap=plt.cm.Reds) ax.set_title("features correlation") extra_data["correlation"] = context.log_artifact( PlotArtifact("correlation", body=plt.gcf(), title="Correlation Matrix"), local_path=f"{plots_dest}/corr.html", db_key=False, ) except Exception as e: context.logger.warn( f"Failed to create features correlation plot due to: {e}") gcf_clear(plt) if update_dataset and table.meta and table.meta.kind == "dataset": from mlrun.artifacts import update_dataset_meta update_dataset_meta(table.meta, extra_data=extra_data)
def describe_spark(context: MLClientCtx, dataset: DataItem, artifact_path, bins: int = 30, describe_extended: bool = True): location = dataset.local() spark = SparkSession.builder.appName("Spark job").getOrCreate() df = spark.read.csv(location, header=True, inferSchema=True) kwargs = [] float_cols = [ item[0] for item in df.dtypes if item[1].startswith('float') or item[1].startswith('double') ] if describe_extended == True: table, variables, freq = describe(df, bins, float_cols, kwargs) tbl_1 = variables.reset_index() if len(freq) != 0: tbl_2 = pd.DataFrame.from_dict( freq, orient="index").sort_index().stack().reset_index() tbl_2.columns = ['col', 'key', 'val'] tbl_2['Merged'] = [{ key: val } for key, val in zip(tbl_2.key, tbl_2.val)] tbl_2 = tbl_2.groupby( 'col', as_index=False).agg(lambda x: tuple(x))[['col', 'Merged']] summary = pd.merge(tbl_1, tbl_2, how='left', left_on='index', right_on='col') else: summary = tbl_1 context.log_dataset("summary_stats", df=summary, format="csv", index=False, artifact_path=context.artifact_subpath('data')) context.log_results(table) else: tbl_1 = df.describe().toPandas() summary = tbl_1.T context.log_dataset("summary_stats", df=summary, format="csv", index=False, artifact_path=context.artifact_subpath('data')) spark.stop()
def data_clean( context: MLClientCtx, src: DataItem, file_ext: str = "csv", models_dest: str = "models/encoders", cleaned_key: str = "cleaned-data", encoded_key: str = "encoded-data", ): """process a raw churn data file Data has 3 states here: `raw`, `cleaned` and `encoded` * `raw` kept by default, the pipeline begins with a raw data artifact * `cleaned` kept for charts, presentations * `encoded` is input for a cross validation and training function steps (not necessarily in correct order, some parallel) * column name maps * deal with nans and other types of missings/junk * label encode binary and ordinal category columns * create category ranges from numerical columns And finally, * test Why we don't one-hot-encode here? One hot encoding isn't a necessary step for all algorithms. It can also generate a very large feature matrix that doesn't need to be serialized (even if sparse). So we leave one-hot-encoding for the training step. What about scaling numerical columns? Same as why we don't one hot encode here. Do we scale before train-test split? IMHO, no. Scaling before splitting introduces a type of data leakage. In addition, many estimators are completely immune to the monotonic transformations implied by scaling, so why waste the cycles? TODO: * parallelize where possible * more abstraction (more parameters, chain sklearn transformers) * convert to marketplace function :param context: the function execution context :param src: an artifact or file path :param file_ext: file type for artifacts :param models_dest: label encoders and other preprocessing steps should be saved together with other pipeline models :param cleaned_key: key of cleaned data table in artifact store :param encoded_key: key of encoded data table in artifact store """ df = src.as_df() # drop columns drop_cols_list = ["customerID", "TotalCharges"] df.drop(drop_cols_list, axis=1, inplace=True) # header transformations rename_cols_map = { "SeniorCitizen": "senior", "Partner": "partner", "Dependents": "deps", "Churn": "labels", } df.rename(rename_cols_map, axis=1, inplace=True) # add drop column to logs: for col in drop_cols_list: rename_cols_map.update({col: "_DROPPED_"}) # log the op tp = os.path.join(models_dest, "preproc-column_map.json") context.log_artifact("preproc-column_map.json", body=json.dumps(rename_cols_map), local_path=tp) # VALUE transformations # clean # truncate reply to "No" df = df.applymap(lambda x: "No" if str(x).startswith("No ") else x) # encode numerical type as category bins (ordinal) bins = [0, 12, 24, 36, 48, 60, np.inf] labels = [0, 1, 2, 3, 4, 5] df["tenure_map"] = pd.cut(df.tenure, bins, labels=False) tenure_map = dict(zip(bins, labels)) # save this transformation tp = os.path.join(models_dest, "preproc-numcat_map.json") context.log_artifact( "preproc-numcat_map.json", body=bytes(json.dumps(tenure_map).encode("utf-8")), local_path=tp, ) context.log_dataset(cleaned_key, df=df, format=file_ext, index=False) # label encoding - generate model for each column saved in dict # some of these columns may be hot encoded in the training step fix_cols = [ "gender", "partner", "deps", "OnlineSecurity", "OnlineBackup", "DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies", "PhoneService", "MultipleLines", "PaperlessBilling", "InternetService", "Contract", "PaymentMethod", "labels", ] d = defaultdict(LabelEncoder) df[fix_cols] = df[fix_cols].apply( lambda x: d[x.name].fit_transform(x.astype(str))) context.log_dataset(encoded_key, df=df, format=file_ext, index=False) model_bin = dumps(d) context.log_model( "model", body=model_bin, artifact_path=os.path.join(context.artifact_path, models_dest), model_file="model.pkl", )
def _generate_mpi_job( self, runobj: RunObject, execution: MLClientCtx, meta: client.V1ObjectMeta, ) -> dict: pod_labels = deepcopy(meta.labels) pod_labels["mlrun/job"] = meta.name # Populate mpijob object # start by populating pod templates launcher_pod_template = deepcopy(self._mpijob_pod_template) worker_pod_template = deepcopy(self._mpijob_pod_template) # configuration for both launcher and workers for pod_template in [launcher_pod_template, worker_pod_template]: if self.spec.image: self._update_container(pod_template, "image", self.full_image_path()) self._update_container(pod_template, "volumeMounts", self.spec.volume_mounts) extra_env = self._generate_runtime_env(runobj) extra_env = [{"name": k, "value": v} for k, v in extra_env.items()] self._update_container(pod_template, "env", extra_env + self.spec.env) if self.spec.image_pull_policy: self._update_container( pod_template, "imagePullPolicy", self.spec.image_pull_policy, ) if self.spec.workdir: self._update_container(pod_template, "workingDir", self.spec.workdir) if self.spec.image_pull_secret: update_in( pod_template, "spec.imagePullSecrets", [{ "name": self.spec.image_pull_secret }], ) update_in(pod_template, "metadata.labels", pod_labels) update_in(pod_template, "spec.volumes", self.spec.volumes) # configuration for workers only # update resources only for workers because the launcher # doesn't require special resources (like GPUs, Memory, etc..) self._enrich_worker_configurations(worker_pod_template) # configuration for launcher only self._enrich_launcher_configurations(launcher_pod_template) # generate mpi job using both pod templates job = self._generate_mpi_job_template(launcher_pod_template, worker_pod_template) # update the replicas only for workers update_in( job, "spec.mpiReplicaSpecs.Worker.replicas", self.spec.replicas or 1, ) update_in( job, "spec.cleanPodPolicy", self.spec.clean_pod_policy, ) if execution.get_param("slots_per_worker"): update_in( job, "spec.slotsPerWorker", execution.get_param("slots_per_worker"), ) update_in(job, "metadata", meta.to_dict()) return job
def train_model(context: MLClientCtx, dataset: DataItem, model_pkg_class: str, label_column: str = "label", train_validation_size: float = 0.75, sample: float = 1.0, models_dest: str = "models", test_set_key: str = "test_set", plots_dest: str = "plots", dask_key: str = "dask_key", dask_persist: bool = False, scheduler_key: str = '', file_ext: str = "parquet", random_state: int = 42) -> None: """ Train a sklearn classifier with Dask :param context: Function context. :param dataset: Raw data file. :param model_pkg_class: Model to train, e.g, "sklearn.ensemble.RandomForestClassifier", or json model config. :param label_column: (label) Ground-truth y labels. :param train_validation_size: (0.75) Train validation set proportion out of the full dataset. :param sample: (1.0) Select sample from dataset (n-rows/% of total), randomzie rows as default. :param models_dest: (models) Models subfolder on artifact path. :param test_set_key: (test_set) Mlrun db key of held out data in artifact store. :param plots_dest: (plots) Plot subfolder on artifact path. :param dask_key: (dask key) Key of dataframe in dask client "datasets" attribute. :param dask_persist: (False) Should the data be persisted (through the `client.persist`) :param scheduler_key: (scheduler) Dask scheduler configuration, json also logged as an artifact. :param file_ext: (parquet) format for test_set_key hold out data :param random_state: (42) sklearn seed """ if scheduler_key: client = Client(scheduler_key) else: client = Client() context.logger.info("Read Data") df = dataset.as_df(df_module=dd) context.logger.info("Prep Data") numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] df = df.select_dtypes(include=numerics) if df.isna().any().any().compute() == True: raise Exception('NAs valus found') df_header = df.columns df = df.sample(frac=sample).reset_index(drop=True) encoder = LabelEncoder() encoder = encoder.fit(df[label_column]) X = df.drop(label_column, axis=1).to_dask_array(lengths=True) y = encoder.transform(df[label_column]) classes = df[label_column].drop_duplicates() # no unique values in dask classes = [str(i) for i in classes] context.logger.info("Split and Train") X_train, X_test, y_train, y_test = model_selection.train_test_split( X, y, train_size=train_validation_size, random_state=random_state) scaler = StandardScaler() scaler = scaler.fit(X_train) X_train_transformed = scaler.transform(X_train) X_test_transformed = scaler.transform(X_test) model_config = gen_sklearn_model(model_pkg_class, context.parameters.items()) model_config["FIT"].update({"X": X_train_transformed, "y": y_train}) ClassifierClass = create_class(model_config["META"]["class"]) model = ClassifierClass(**model_config["CLASS"]) with joblib.parallel_backend("dask"): model = model.fit(**model_config["FIT"]) artifact_path = context.artifact_subpath(models_dest) plots_path = context.artifact_subpath(models_dest, plots_dest) context.logger.info("Evaluate") extra_data_dict = {} for report in (ROCAUC, ClassificationReport, ConfusionMatrix): report_name = str(report.__name__) plt.cla() plt.clf() plt.close() viz = report(model, classes=classes, per_class=True, is_fitted=True) viz.fit(X_train_transformed, y_train) # Fit the training data to the visualizer viz.score(X_test_transformed, y_test.compute()) # Evaluate the model on the test data plot = context.log_artifact(PlotArtifact(report_name, body=viz.fig, title=report_name), db_key=False) extra_data_dict[str(report)] = plot if report_name == 'ROCAUC': context.log_results({ "micro": viz.roc_auc.get("micro"), "macro": viz.roc_auc.get("macro") }) elif report_name == 'ClassificationReport': for score_name in viz.scores_: for score_class in viz.scores_[score_name]: context.log_results({ score_name + "-" + score_class: viz.scores_[score_name].get(score_class) }) viz = FeatureImportances(model, classes=classes, per_class=True, is_fitted=True, labels=df_header.delete( df_header.get_loc(label_column))) viz.fit(X_train_transformed, y_train) viz.score(X_test_transformed, y_test) plot = context.log_artifact(PlotArtifact("FeatureImportances", body=viz.fig, title="FeatureImportances"), db_key=False) extra_data_dict[str("FeatureImportances")] = plot plt.cla() plt.clf() plt.close() context.logger.info("Log artifacts") artifact_path = context.artifact_subpath(models_dest) plots_path = context.artifact_subpath(models_dest, plots_dest) context.set_label('class', model_pkg_class) context.log_model("model", body=dumps(model), artifact_path=artifact_path, model_file="model.pkl", extra_data=extra_data_dict, metrics=context.results, labels={"class": model_pkg_class}) context.log_artifact("standard_scaler", body=dumps(scaler), artifact_path=artifact_path, model_file="scaler.gz", label="standard_scaler") context.log_artifact("label_encoder", body=dumps(encoder), artifact_path=artifact_path, model_file="encoder.gz", label="label_encoder") df_to_save = delayed(np.column_stack)((X_test, y_test)).compute() context.log_dataset( test_set_key, df=pd.DataFrame(df_to_save, columns=df_header), # improve log dataset ability format=file_ext, index=False, labels={"data-type": "held-out"}, artifact_path=context.artifact_subpath('data')) context.logger.info("Done!")
def permutation_importance( context: MLClientCtx, model: DataItem, dataset: DataItem, labels: str, figsz=(10, 5), plots_dest: str = "plots", fitype: str = "permute", ) -> pd.DataFrame: """calculate change in metric type 'permute' uses a pre-estimated model type 'dropcol' uses a re-estimates model :param context: the function's execution context :param model: a trained model :param dataset: features and ground truths, regression targets :param labels name of the ground truths column :param figsz: matplotlib figure size :param plots_dest: path within artifact store : """ model_file, model_data, _ = get_model(model.url, suffix=".pkl") model = load(open(str(model_file), "rb")) X = dataset.as_df() y = X.pop(labels) header = X.columns metric = _oob_classifier_accuracy baseline = metric(model, X, y) imp = [] for col in X.columns: if fitype is "permute": save = X[col].copy() X[col] = np.random.permutation(X[col]) m = metric(model, X, y) X[col] = save imp.append(baseline - m) elif fitype is "dropcol": X_ = X.drop(col, axis=1) model_ = clone(model) #model_.random_state = random_state model_.fit(X_, y) o = model_.oob_score_ imp.append(baseline - o) else: raise ValueError( "unknown fitype, only 'permute' or 'dropcol' permitted") zipped = zip(imp, header) feature_imp = pd.DataFrame(sorted(zipped), columns=["importance", "feature"]) feature_imp.sort_values(by="importance", ascending=False, inplace=True) plt.clf() plt.figure(figsize=figsz) sns.barplot(x="importance", y="feature", data=feature_imp) plt.title(f"feature importances-{fitype}") plt.tight_layout() context.log_artifact( PlotArtifact(f"feature importances-{fitype}", body=plt.gcf()), local_path=f"{plots_dest}/feature-permutations.html", ) context.log_dataset(f"feature-importances-{fitype}-tbl", df=feature_imp, index=False)
def training(context: MLClientCtx, p1: int = 1, p2: int = 2) -> None: """Train a model. :param context: The runtime context object. :param p1: A model parameter. :param p2: Another model parameter. """ # access input metadata, values, and inputs print(f"Run: {context.name} (uid={context.uid})") print(f"Params: p1={p1}, p2={p2}") context.logger.info("started training") # <insert training code here> # log the run results (scalar values) context.log_result("accuracy", p1 * 2) context.log_result("loss", p1 * 3) # add a lable/tag to this run context.set_label("category", "tests") # log a simple artifact + label the artifact # If you want to upload a local file to the artifact repo add src_path=<local-path> context.log_artifact("somefile", body=b"abc is 123", local_path="myfile.txt") # create a dataframe artifact df = pd.DataFrame([{ "A": 10, "B": 100 }, { "A": 11, "B": 110 }, { "A": 12, "B": 120 }]) context.log_dataset("mydf", df=df) # Log an ML Model artifact, add metrics, params, and labels to it # and place it in a subdir ('models') under artifacts path context.log_model( "mymodel", body=b"abc is 123", model_file="model.txt", metrics={"accuracy": 0.85}, parameters={"xx": "abc"}, labels={"framework": "xgboost"}, artifact_path=context.artifact_subpath("models"), )
def fit(context: MLClientCtx, dataset: DataItem, num_boost_round: int = 10, evals: List[Tuple[DMatrix, str]] = [], obj: Union[Callable, str] = "", feval: Union[Callable, str] = None, maximize: bool = False, early_stopping_rounds: int = None, evals_result: dict = {}, verbose_eval: bool = True, xgb_model: DataItem = None, callbacks: List[Callable] = [], label_column: str = "labels", encode_cols: dict = {}, sample: int = -1, test_size: float = 0.25, valid_size: float = 0.75, random_state: int = 1994, models_dest: str = "models", plots_dest: str = "plots", file_ext: str = "csv", test_set_key: str = "test-set", gpus: bool = False) -> None: """low level xgboost train api for the xgboost `train` params see: https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.train Note: the first parameter of xgboost's `train` method is a dict of parameters supplied to the booster (engine). To modify one of those simply add a task parameter (when running you supply an mlrun NewTask) with the prefix "XGB_". So for example, to set the 'tree_method' parameter to 'approx', add {"XGB_tree_method":"approx"} to the task params key. :param context: the function context :param dataset: the full data set, train, valid and test will be extracted and each converted to a DMatrix for input to xgboost's `train` :param label_column: ground-truth (y) labels :param encode_cols: dictionary of names and prefixes for columns that are to hot be encoded. :param sample: Selects the first n rows, or select a sample starting from the first. If negative <-1, select a random sample :param test_size: (0.05) test set size :param valid_size: (0.75) Once the test set has been removed the training set gets this proportion. :param random_state: (1) sklearn rng seed :param models_dest: destination subfolder for model artifacts :param plots_dest: destination subfolder for plot artifacts :param file_ext: format for test_set_key hold out data :param test_set_key: (test-set), key of held out data in artifact store :param gpus: (False), run on gpus """ raw, labels, header = get_sample(dataset, sample, label_column) # hot-encode if encode_cols: raw = pd.get_dummies(raw, columns=list(encode_cols.keys()), prefix=list(encode_cols.values()), drop_first=True) # split the sample into train validate, test and calibration sets: (xtrain, ytrain), (xvalid, yvalid), (xtest, ytest) = \ get_splits(raw, labels, 3, test_size, valid_size, random_state) # save test data as regular dataframe as it may be used by other process context.log_dataset(test_set_key, df=pd.concat([xtest, ytest], axis=1), format=file_ext, index=False) # convert to xgboost DMatrix (todo - dask, gpu) dtrain = DMatrix(xtrain, label=ytrain) dvalid = DMatrix(xvalid, label=yvalid) boost_params = { "tree_method": "gpu_hist" if gpus else "hist", "seed": random_state, "disable_default_eval_metric": 1, "objective": "reg:squaredlogerror", "eval_metric": "rmsle" } # enable user to customize `booster param` parameters for k, v in context.parameters.items(): if k.startswith('XGB_'): boost_params[k[4:]] = v # collect learning curves / training history results = dict() booster = train( boost_params, dtrain=dtrain, num_boost_round=num_boost_round, evals=[(dtrain, "train"), (dvalid, "valid")], evals_result=results, obj=squared_log, feval=rmsle, maximize=maximize, early_stopping_rounds=early_stopping_rounds, verbose_eval=verbose_eval, # xgb_model=xgb_model, # callbacks: List[Callable] = [] ) context.log_model("model", body=dumps(booster), model_file="model.pkl", artifact_path='/User/artifacts/tttt') learning_curves(context, results)
def _generate_mpi_job( self, runobj: RunObject, execution: MLClientCtx, meta: client.V1ObjectMeta, ) -> dict: pod_labels = deepcopy(meta.labels) pod_labels["mlrun/job"] = meta.name # Populate mpijob object # start by populating pod templates launcher_pod_template = deepcopy(self._mpijob_pod_template) worker_pod_template = deepcopy(self._mpijob_pod_template) command, args, extra_env = self._get_cmd_args(runobj) # configuration for both launcher and workers for pod_template in [launcher_pod_template, worker_pod_template]: if self.spec.image: self._update_container(pod_template, "image", self.full_image_path()) self._update_container(pod_template, "volumeMounts", self.spec.volume_mounts) self._update_container(pod_template, "env", extra_env + self.spec.env) if self.spec.image_pull_policy: self._update_container( pod_template, "imagePullPolicy", self.spec.image_pull_policy, ) if self.spec.workdir: self._update_container(pod_template, "workingDir", self.spec.workdir) if self.spec.image_pull_secret: update_in( pod_template, "spec.imagePullSecrets", [{ "name": self.spec.image_pull_secret }], ) update_in(pod_template, "metadata.labels", pod_labels) update_in(pod_template, "spec.volumes", self.spec.volumes) update_in(pod_template, "spec.nodeName", self.spec.node_name) update_in(pod_template, "spec.nodeSelector", self.spec.node_selector) update_in(pod_template, "spec.affinity", self.spec._get_sanitized_affinity()) if self.spec.priority_class_name and len( mlconf.get_valid_function_priority_class_names()): update_in( pod_template, "spec.priorityClassName", self.spec.priority_class_name, ) # configuration for workers only # update resources only for workers because the launcher # doesn't require special resources (like GPUs, Memory, etc..) self._enrich_worker_configurations(worker_pod_template) # configuration for launcher only self._enrich_launcher_configurations(launcher_pod_template, [command] + args) # generate mpi job using both pod templates job = self._generate_mpi_job_template(launcher_pod_template, worker_pod_template) # update the replicas only for workers update_in( job, "spec.mpiReplicaSpecs.Worker.replicas", self.spec.replicas or 1, ) update_in( job, "spec.cleanPodPolicy", self.spec.clean_pod_policy, ) if execution.get_param("slots_per_worker"): update_in( job, "spec.slotsPerWorker", execution.get_param("slots_per_worker"), ) update_in(job, "metadata", meta.to_dict()) return job
def data_clean(context: MLClientCtx, src: DataItem, file_ext: str = "csv", models_dest: str = "models/encoders", cleaned_key: str = "cleaned-data", encoded_key: str = "encoded-data"): df = src.as_df() # drop columns drop_cols_list = ["customerID", "TotalCharges"] df.drop(drop_cols_list, axis=1, inplace=True) # header transformations old_cols = df.columns rename_cols_map = { "SeniorCitizen": "senior", "Partner": "partner", "Dependents": "deps", "Churn": "labels" } df.rename(rename_cols_map, axis=1, inplace=True) # add drop column to logs: for col in drop_cols_list: rename_cols_map.update({col: "_DROPPED_"}) # log the op tp = os.path.join(models_dest, "preproc-column_map.json") context.log_artifact("preproc-column_map.json", body=json.dumps(rename_cols_map), local_path=tp) df = df.applymap(lambda x: "No" if str(x).startswith("No ") else x) # encode numerical type as category bins (ordinal) bins = [0, 12, 24, 36, 48, 60, np.inf] labels = [0, 1, 2, 3, 4, 5] tenure = df.tenure.copy(deep=True) df["tenure_map"] = pd.cut(df.tenure, bins, labels=False) tenure_map = dict(zip(bins, labels)) # save this transformation tp = os.path.join(models_dest, "preproc-numcat_map.json") context.log_artifact("preproc-numcat_map.json", body=bytes(json.dumps(tenure_map).encode("utf-8")), local_path=tp) context.log_dataset(cleaned_key, df=df, format=file_ext, index=False) fix_cols = [ "gender", "partner", "deps", "OnlineSecurity", "OnlineBackup", "DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies", "PhoneService", "MultipleLines", "PaperlessBilling", "InternetService", "Contract", "PaymentMethod", "labels" ] d = defaultdict(LabelEncoder) df[fix_cols] = df[fix_cols].apply( lambda x: d[x.name].fit_transform(x.astype(str))) context.log_dataset(encoded_key, df=df, format=file_ext, index=False) model_bin = dumps(d) context.log_model("model", body=model_bin, artifact_path=os.path.join(context.artifact_path, models_dest), model_file="model.pkl")