def execute(self, result_object_schema_type, result_object_schema_version): # Create Result object results_object = MLObject() results_object.set_type( schema_type=result_object_schema_type, schema_version=result_object_schema_version, ) # Mocked up results return_dict = { "training_execution_id": uuid.uuid4(), "accuracy": float(f"{randrange(93000,99999)/100000}"), "global_step": int(f"{randrange(50,150) * 100}"), "loss": float(f"{randrange(10000,99999)/1000000}") } results_object.training_execution_id = return_dict[ "training_execution_id"] results_object.accuracy = return_dict["accuracy"] results_object.global_step = return_dict["global_step"] results_object.loss = return_dict["loss"] return results_object
def execute(self, result_object_schema_type, result_object_schema_version): # Create Result object results_object = MLObject() results_object.set_type( schema_type=result_object_schema_type, schema_version=result_object_schema_version, ) # Mocked up results return_dict = { "training_execution_id": str(uuid.uuid4()), "accuracy": float(random.randrange(0, 100) / 100), "global_step": 10**random.randrange(2, 4), "loss": float(random.randrange(1000, 9999) / 1000), } results_object.training_execution_id = return_dict[ "training_execution_id"] results_object.accuracy = return_dict["accuracy"] results_object.global_step = return_dict["global_step"] results_object.loss = return_dict["loss"] errors = results_object.validate() # noqa return results_object