Example #1
0
def train_model(model,
                dataset,
                cfg,
                distributed=False,
                validate=False,
                timestamp=None,
                meta=None):
    logger = get_root_logger(cfg.log_level)

    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]

    data_loaders = [
        build_dataloader(
            ds,
            cfg.data.samples_per_gpu,
            cfg.data.workers_per_gpu,
            # cfg.gpus will be ignored if distributed
            num_gpus=len(cfg.gpu_ids),
            dist=distributed,
            round_up=True,
            seed=cfg.seed) for ds in dataset
    ]

    # put model on gpus
    if distributed:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        # Sets the `find_unused_parameters` parameter in
        # torch.nn.parallel.DistributedDataParallel
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)
    else:
        model = MMDataParallel(
            model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids)

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(
        model,
        optimizer=optimizer,
        work_dir=cfg.work_dir,
        logger=logger,
        meta=meta,
        ema_cfg=cfg.get('ema_cfg', None))
    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(
            **cfg.optimizer_config, **fp16_cfg, distributed=distributed)
    elif distributed and 'type' not in cfg.optimizer_config:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
    else:
        optimizer_config = cfg.optimizer_config

    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config,
                                   cfg.get('momentum_config', None))
    if distributed:
        runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        val_dataloader = build_dataloader(
            val_dataset,
            samples_per_gpu=cfg.data.samples_per_gpu,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=distributed,
            shuffle=False,
            round_up=False)
        eval_cfg = cfg.get('evaluation', {})
        eval_hook = DistEvalHook if distributed else EvalHook
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #2
0
def train_model(model,
                dataset,
                cfg,
                distributed=False,
                validate=False,
                timestamp=None,
                device=None,
                meta=None):
    """Train a model.

    This method will build dataloaders, wrap the model and build a runner
    according to the provided config.

    Args:
        model (:obj:`torch.nn.Module`): The model to be run.
        dataset (:obj:`mmcls.datasets.BaseDataset` | List[BaseDataset]):
            The dataset used to train the model. It can be a single dataset,
            or a list of dataset with the same length as workflow.
        cfg (:obj:`mmcv.utils.Config`): The configs of the experiment.
        distributed (bool): Whether to train the model in a distributed
            environment. Defaults to False.
        validate (bool): Whether to do validation with
            :obj:`mmcv.runner.EvalHook`. Defaults to False.
        timestamp (str, optional): The timestamp string to auto generate the
            name of log files. Defaults to None.
        device (str, optional): TODO
        meta (dict, optional): A dict records some import information such as
            environment info and seed, which will be logged in logger hook.
            Defaults to None.
    """
    logger = get_root_logger()

    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]

    # The default loader config
    loader_cfg = dict(
        # cfg.gpus will be ignored if distributed
        num_gpus=cfg.ipu_replicas if device == 'ipu' else len(cfg.gpu_ids),
        dist=distributed,
        round_up=True,
        seed=cfg.get('seed'),
        sampler_cfg=cfg.get('sampler', None),
    )
    # The overall dataloader settings
    loader_cfg.update({
        k: v
        for k, v in cfg.data.items() if k not in [
            'train', 'val', 'test', 'train_dataloader', 'val_dataloader',
            'test_dataloader'
        ]
    })
    # The specific dataloader settings
    train_loader_cfg = {**loader_cfg, **cfg.data.get('train_dataloader', {})}

    data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]

    # put model on gpus
    if distributed:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        # Sets the `find_unused_parameters` parameter in
        # torch.nn.parallel.DistributedDataParallel
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)
    else:
        if device == 'cpu':
            warnings.warn(
                'The argument `device` is deprecated. To use cpu to train, '
                'please refers to https://mmclassification.readthedocs.io/en'
                '/latest/getting_started.html#train-a-model')
            model = model.cpu()
        elif device == 'ipu':
            model = model.cpu()
        else:
            model = MMDataParallel(model, device_ids=cfg.gpu_ids)
            if not model.device_ids:
                from mmcv import __version__, digit_version
                assert digit_version(__version__) >= (1, 4, 4), \
                    'To train with CPU, please confirm your mmcv version ' \
                    'is not lower than v1.4.4'

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)

    if cfg.get('runner') is None:
        cfg.runner = {
            'type': 'EpochBasedRunner',
            'max_epochs': cfg.total_epochs
        }
        warnings.warn(
            'config is now expected to have a `runner` section, '
            'please set `runner` in your config.', UserWarning)

    if device == 'ipu':
        if not cfg.runner['type'].startswith('IPU'):
            cfg.runner['type'] = 'IPU' + cfg.runner['type']
        if 'options_cfg' not in cfg.runner:
            cfg.runner['options_cfg'] = {}
        cfg.runner['options_cfg']['replicationFactor'] = cfg.ipu_replicas
        cfg.runner['fp16_cfg'] = cfg.get('fp16', None)

    runner = build_runner(cfg.runner,
                          default_args=dict(model=model,
                                            batch_processor=None,
                                            optimizer=optimizer,
                                            work_dir=cfg.work_dir,
                                            logger=logger,
                                            meta=meta))

    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        if device == 'ipu':
            from mmcv.device.ipu import IPUFp16OptimizerHook
            optimizer_config = IPUFp16OptimizerHook(
                **cfg.optimizer_config,
                loss_scale=fp16_cfg['loss_scale'],
                distributed=distributed)
        else:
            optimizer_config = Fp16OptimizerHook(
                **cfg.optimizer_config,
                loss_scale=fp16_cfg['loss_scale'],
                distributed=distributed)
    elif distributed and 'type' not in cfg.optimizer_config:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
    else:
        optimizer_config = cfg.optimizer_config

    # register hooks
    runner.register_training_hooks(cfg.lr_config,
                                   optimizer_config,
                                   cfg.checkpoint_config,
                                   cfg.log_config,
                                   cfg.get('momentum_config', None),
                                   custom_hooks_config=cfg.get(
                                       'custom_hooks', None))
    if distributed and cfg.runner['type'] == 'EpochBasedRunner':
        runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        # The specific dataloader settings
        val_loader_cfg = {
            **loader_cfg,
            'shuffle': False,  # Not shuffle by default
            'sampler_cfg': None,  # Not use sampler by default
            **cfg.data.get('val_dataloader', {}),
        }
        val_dataloader = build_dataloader(val_dataset, **val_loader_cfg)
        eval_cfg = cfg.get('evaluation', {})
        eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
        eval_hook = DistEvalHook if distributed else EvalHook
        # `EvalHook` needs to be executed after `IterTimerHook`.
        # Otherwise, it will cause a bug if use `IterBasedRunner`.
        # Refers to https://github.com/open-mmlab/mmcv/issues/1261
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg),
                             priority='LOW')

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow)
Example #3
0
def train_model(model,
                dataset,
                cfg,
                distributed=False,
                validate=False,
                timestamp=None,
                device='cuda',
                meta=None):
    logger = get_root_logger(cfg.log_level)

    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]

    data_loaders = [
        build_dataloader(
            ds,
            cfg.data.samples_per_gpu,
            cfg.data.workers_per_gpu,
            # cfg.gpus will be ignored if distributed
            num_gpus=len(cfg.gpu_ids),
            dist=distributed,
            round_up=True,
            seed=cfg.seed) for ds in dataset
    ]

    # put model on gpus
    if distributed:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        # Sets the `find_unused_parameters` parameter in
        # torch.nn.parallel.DistributedDataParallel
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)
    else:
        if device == 'cuda':
            model = MMDataParallel(model.cuda(cfg.gpu_ids[0]),
                                   device_ids=cfg.gpu_ids)
        elif device == 'cpu':
            model = model.cpu()
        else:
            raise ValueError(F'unsupported device name {device}.')

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)

    if cfg.get('runner') is None:
        cfg.runner = {
            'type': 'EpochBasedRunner',
            'max_epochs': cfg.total_epochs
        }
        warnings.warn(
            'config is now expected to have a `runner` section, '
            'please set `runner` in your config.', UserWarning)

    runner = build_runner(cfg.runner,
                          default_args=dict(model=model,
                                            batch_processor=None,
                                            optimizer=optimizer,
                                            work_dir=cfg.work_dir,
                                            logger=logger,
                                            meta=meta))

    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg,
                                             distributed=distributed)
    elif distributed and 'type' not in cfg.optimizer_config:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
    else:
        optimizer_config = cfg.optimizer_config

    # register hooks
    runner.register_training_hooks(cfg.lr_config,
                                   optimizer_config,
                                   cfg.checkpoint_config,
                                   cfg.log_config,
                                   cfg.get('momentum_config', None),
                                   custom_hooks_config=cfg.get(
                                       'custom_hooks', None))
    if distributed:
        runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        val_dataloader = build_dataloader(
            val_dataset,
            samples_per_gpu=cfg.data.samples_per_gpu,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=distributed,
            shuffle=False,
            round_up=True)
        eval_cfg = cfg.get('evaluation', {})
        eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
        eval_hook = DistEvalHook if distributed else EvalHook
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow)
Example #4
0
def train_model(model,
                dataset,
                cfg,
                distributed=False,
                validate=False,
                timestamp=None,
                device=None,
                meta=None):
    logger = get_root_logger()

    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]

    sampler_cfg = cfg.data.get('sampler', None)

    data_loaders = [
        build_dataloader(
            ds,
            cfg.data.samples_per_gpu,
            cfg.data.workers_per_gpu,
            # cfg.gpus will be ignored if distributed
            num_gpus=len(cfg.gpu_ids),
            dist=distributed,
            round_up=True,
            seed=cfg.seed,
            sampler_cfg=sampler_cfg) for ds in dataset
    ]

    # put model on gpus
    if distributed:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        # Sets the `find_unused_parameters` parameter in
        # torch.nn.parallel.DistributedDataParallel
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)
    else:
        if device == 'cpu':
            warnings.warn(
                'The argument `device` is deprecated. To use cpu to train, '
                'please refers to https://mmclassification.readthedocs.io/en'
                '/latest/getting_started.html#train-a-model')
            model = model.cpu()
        else:
            model = MMDataParallel(model, device_ids=cfg.gpu_ids)
            if not model.device_ids:
                from mmcv import __version__, digit_version
                assert digit_version(__version__) >= (1, 4, 4), \
                    'To train with CPU, please confirm your mmcv version ' \
                    'is not lower than v1.4.4'

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)

    if cfg.get('runner') is None:
        cfg.runner = {
            'type': 'EpochBasedRunner',
            'max_epochs': cfg.total_epochs
        }
        warnings.warn(
            'config is now expected to have a `runner` section, '
            'please set `runner` in your config.', UserWarning)

    runner = build_runner(cfg.runner,
                          default_args=dict(model=model,
                                            batch_processor=None,
                                            optimizer=optimizer,
                                            work_dir=cfg.work_dir,
                                            logger=logger,
                                            meta=meta))

    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg,
                                             distributed=distributed)
    elif distributed and 'type' not in cfg.optimizer_config:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
    else:
        optimizer_config = cfg.optimizer_config

    # register hooks
    runner.register_training_hooks(cfg.lr_config,
                                   optimizer_config,
                                   cfg.checkpoint_config,
                                   cfg.log_config,
                                   cfg.get('momentum_config', None),
                                   custom_hooks_config=cfg.get(
                                       'custom_hooks', None))
    if distributed and cfg.runner['type'] == 'EpochBasedRunner':
        runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        val_dataloader = build_dataloader(
            val_dataset,
            samples_per_gpu=cfg.data.samples_per_gpu,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=distributed,
            shuffle=False,
            round_up=True)
        eval_cfg = cfg.get('evaluation', {})
        eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
        eval_hook = DistEvalHook if distributed else EvalHook
        # `EvalHook` needs to be executed after `IterTimerHook`.
        # Otherwise, it will cause a bug if use `IterBasedRunner`.
        # Refers to https://github.com/open-mmlab/mmcv/issues/1261
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg),
                             priority='LOW')

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow)