Example #1
0
def test_indoor_seg_sample():
    # test the train time behavior of IndoorPatchPointSample
    np.random.seed(0)
    scannet_patch_sample_points = IndoorPatchPointSample(
        5, 1.5, ignore_index=20, use_normalized_coord=True)
    scannet_seg_class_mapping = \
        PointSegClassMapping((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16,
                              24, 28, 33, 34, 36, 39), 40)
    scannet_results = dict()
    scannet_points = np.fromfile(
        './tests/data/scannet/points/scene0000_00.bin',
        dtype=np.float32).reshape((-1, 6))
    scannet_results['points'] = DepthPoints(
        scannet_points, points_dim=6, attribute_dims=dict(color=[3, 4, 5]))

    scannet_pts_semantic_mask = np.fromfile(
        './tests/data/scannet/semantic_mask/scene0000_00.bin', dtype=np.long)
    scannet_results['pts_semantic_mask'] = scannet_pts_semantic_mask

    scannet_results = scannet_seg_class_mapping(scannet_results)
    scannet_results = scannet_patch_sample_points(scannet_results)
    scannet_points_result = scannet_results['points']
    scannet_semantic_labels_result = scannet_results['pts_semantic_mask']

    # manually constructed sampled points
    scannet_choices = np.array([87, 34, 58, 9, 18])
    scannet_center = np.array([-2.1772466, -3.4789145, 1.242711])
    scannet_center[2] = 0.0
    scannet_coord_max = np.amax(scannet_points[:, :3], axis=0)
    scannet_input_points = np.concatenate([
        scannet_points[scannet_choices, :3] - scannet_center,
        scannet_points[scannet_choices, 3:],
        scannet_points[scannet_choices, :3] / scannet_coord_max
    ], 1)

    assert scannet_points_result.points_dim == 9
    assert scannet_points_result.attribute_dims == dict(
        color=[3, 4, 5], normalized_coord=[6, 7, 8])
    scannet_points_result = scannet_points_result.tensor.numpy()
    assert np.allclose(scannet_input_points, scannet_points_result, atol=1e-6)
    assert np.all(
        np.array([13, 13, 12, 2, 0]) == scannet_semantic_labels_result)

    repr_str = repr(scannet_patch_sample_points)
    expected_repr_str = 'IndoorPatchPointSample(num_points=5, ' \
                        'block_size=1.5, ' \
                        'ignore_index=20, ' \
                        'use_normalized_coord=True, ' \
                        'num_try=10, ' \
                        'enlarge_size=0.2, ' \
                        'min_unique_num=None)'
    assert repr_str == expected_repr_str

    # when enlarge_size and min_unique_num are set
    np.random.seed(0)
    scannet_patch_sample_points = IndoorPatchPointSample(
        5,
        1.0,
        ignore_index=20,
        use_normalized_coord=False,
        num_try=1000,
        enlarge_size=None,
        min_unique_num=5)
    # this patch is within [0, 1] and has 5 unique points
    # it should be selected
    scannet_points = np.random.rand(5, 6)
    scannet_points[0, :3] = np.array([0.5, 0.5, 0.5])
    # generate points smaller than `min_unique_num` in local patches
    # they won't be sampled
    for i in range(2, 11, 2):
        scannet_points = np.concatenate(
            [scannet_points, np.random.rand(4, 6) + i], axis=0)
    scannet_results = dict(
        points=DepthPoints(
            scannet_points, points_dim=6,
            attribute_dims=dict(color=[3, 4, 5])),
        pts_semantic_mask=np.random.randint(0, 20,
                                            (scannet_points.shape[0], )))
    scannet_results = scannet_patch_sample_points(scannet_results)
    scannet_points_result = scannet_results['points']

    # manually constructed sampled points
    scannet_choices = np.array([2, 4, 3, 1, 0])
    scannet_center = np.array([0.56804454, 0.92559665, 0.07103606])
    scannet_center[2] = 0.0
    scannet_input_points = np.concatenate([
        scannet_points[scannet_choices, :3] - scannet_center,
        scannet_points[scannet_choices, 3:],
    ], 1)

    assert scannet_points_result.points_dim == 6
    assert scannet_points_result.attribute_dims == dict(color=[3, 4, 5])
    scannet_points_result = scannet_points_result.tensor.numpy()
    assert np.allclose(scannet_input_points, scannet_points_result, atol=1e-6)

    # test on S3DIS dataset
    np.random.seed(0)
    s3dis_patch_sample_points = IndoorPatchPointSample(
        5, 1.0, ignore_index=None, use_normalized_coord=True)
    s3dis_results = dict()
    s3dis_points = np.fromfile(
        './tests/data/s3dis/points/Area_1_office_2.bin',
        dtype=np.float32).reshape((-1, 6))
    s3dis_results['points'] = DepthPoints(
        s3dis_points, points_dim=6, attribute_dims=dict(color=[3, 4, 5]))

    s3dis_pts_semantic_mask = np.fromfile(
        './tests/data/s3dis/semantic_mask/Area_1_office_2.bin', dtype=np.long)
    s3dis_results['pts_semantic_mask'] = s3dis_pts_semantic_mask

    s3dis_results = s3dis_patch_sample_points(s3dis_results)
    s3dis_points_result = s3dis_results['points']
    s3dis_semantic_labels_result = s3dis_results['pts_semantic_mask']

    # manually constructed sampled points
    s3dis_choices = np.array([87, 37, 60, 18, 31])
    s3dis_center = np.array([2.691, 2.231, 3.172])
    s3dis_center[2] = 0.0
    s3dis_coord_max = np.amax(s3dis_points[:, :3], axis=0)
    s3dis_input_points = np.concatenate([
        s3dis_points[s3dis_choices, :3] - s3dis_center,
        s3dis_points[s3dis_choices,
                     3:], s3dis_points[s3dis_choices, :3] / s3dis_coord_max
    ], 1)

    assert s3dis_points_result.points_dim == 9
    assert s3dis_points_result.attribute_dims == dict(
        color=[3, 4, 5], normalized_coord=[6, 7, 8])
    s3dis_points_result = s3dis_points_result.tensor.numpy()
    assert np.allclose(s3dis_input_points, s3dis_points_result, atol=1e-6)
    assert np.all(np.array([0, 1, 0, 8, 0]) == s3dis_semantic_labels_result)
Example #2
0
def test_depth_points():
    # test empty initialization
    empty_boxes = []
    points = DepthPoints(empty_boxes)
    assert points.tensor.shape[0] == 0
    assert points.tensor.shape[1] == 3

    # Test init with origin
    points_np = np.array([[-5.24223238e+00, 4.00209696e+01, 2.97570381e-01],
                          [-2.66751588e+01, 5.59499564e+00, -9.14345860e-01],
                          [-5.80979675e+00, 3.54092357e+01, 2.00889888e-01],
                          [-3.13086877e+01, 1.09007628e+00, -1.94612112e-01]],
                         dtype=np.float32)
    depth_points = DepthPoints(points_np, points_dim=3)
    assert depth_points.tensor.shape[0] == 4

    # Test init with color and height
    points_np = np.array([[
        -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
        0.4974, 0.9409
    ],
                          [
                              -2.66751588e+01, 5.59499564e+00, -9.14345860e-01,
                              0.1502, 0.3707, 0.1086, 0.6297
                          ],
                          [
                              -5.80979675e+00, 3.54092357e+01, 2.00889888e-01,
                              0.6565, 0.6248, 0.6954, 0.2538
                          ],
                          [
                              -3.13086877e+01, 1.09007628e+00, -1.94612112e-01,
                              0.2803, 0.0258, 0.4896, 0.3269
                          ]],
                         dtype=np.float32)
    depth_points = DepthPoints(points_np,
                               points_dim=7,
                               attribute_dims=dict(color=[3, 4, 5], height=6))
    expected_tensor = torch.tensor([[
        -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
        0.4974, 0.9409
    ],
                                    [
                                        -2.66751588e+01, 5.59499564e+00,
                                        -9.14345860e-01, 0.1502, 0.3707,
                                        0.1086, 0.6297
                                    ],
                                    [
                                        -5.80979675e+00, 3.54092357e+01,
                                        2.00889888e-01, 0.6565, 0.6248, 0.6954,
                                        0.2538
                                    ],
                                    [
                                        -3.13086877e+01, 1.09007628e+00,
                                        -1.94612112e-01, 0.2803, 0.0258,
                                        0.4896, 0.3269
                                    ]])

    assert torch.allclose(expected_tensor, depth_points.tensor)
    assert torch.allclose(expected_tensor[:, :3], depth_points.coord)
    assert torch.allclose(expected_tensor[:, 3:6], depth_points.color)
    assert torch.allclose(expected_tensor[:, 6], depth_points.height)

    # test points clone
    new_depth_points = depth_points.clone()
    assert torch.allclose(new_depth_points.tensor, depth_points.tensor)

    # test points shuffle
    new_depth_points.shuffle()
    assert new_depth_points.tensor.shape == torch.Size([4, 7])

    # test points rotation
    rot_mat = torch.tensor([[0.93629336, -0.27509585, 0.21835066],
                            [0.28962948, 0.95642509, -0.03695701],
                            [-0.19866933, 0.0978434, 0.97517033]])
    depth_points.rotate(rot_mat)
    expected_tensor = torch.tensor([[
        6.6239e+00, 3.9748e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        -2.3174e+01, 1.2600e+01, -6.9230e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        4.7760e+00, 3.5484e+01, -2.3813e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        -2.8960e+01, 9.6364e+00, -7.0663e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-3)

    new_depth_points = depth_points.clone()
    new_depth_points.rotate(0.1, axis=2)
    expected_tensor = torch.tensor([[
        2.6226e+00, 4.0211e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        -2.4316e+01, 1.0224e+01, -6.9230e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        1.2096e+00, 3.5784e+01, -2.3813e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        -2.9777e+01, 6.6971e+00, -7.0663e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, new_depth_points.tensor, 1e-3)

    # test points translation
    translation_vector = torch.tensor([0.93629336, -0.27509585, 0.21835066])
    depth_points.translate(translation_vector)
    expected_tensor = torch.tensor([[
        7.5602e+00, 3.9473e+01, -2.1152e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        -2.2237e+01, 1.2325e+01, -6.7046e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        5.7123e+00, 3.5209e+01, -2.1629e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        -2.8023e+01, 9.3613e+00, -6.8480e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-4)

    # test points filter
    point_range = [-10, -40, -10, 10, 40, 10]
    in_range_flags = depth_points.in_range_3d(point_range)
    expected_flags = torch.tensor([True, False, True, False])
    assert torch.all(in_range_flags == expected_flags)

    # test points scale
    depth_points.scale(1.2)
    expected_tensor = torch.tensor([[
        9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        -2.6685e+01, 1.4790e+01, -8.0455e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        6.8547e+00, 4.2251e+01, -2.5955e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        -3.3628e+01, 1.1234e+01, -8.2176e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-3)

    # test get_item
    expected_tensor = torch.tensor(
        [[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297]])
    assert torch.allclose(expected_tensor, depth_points[1].tensor, 1e-4)
    expected_tensor = torch.tensor(
        [[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297],
         [6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
    assert torch.allclose(expected_tensor, depth_points[1:3].tensor, 1e-4)
    mask = torch.tensor([True, False, True, False])
    expected_tensor = torch.tensor(
        [[9.0722, 47.3678, -2.5382, 0.6666, 0.1956, 0.4974, 0.9409],
         [6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
    assert torch.allclose(expected_tensor, depth_points[mask].tensor, 1e-4)
    expected_tensor = torch.tensor([[0.6666], [0.1502], [0.6565], [0.2803]])
    assert torch.allclose(expected_tensor, depth_points[:, 3].tensor, 1e-4)

    # test length
    assert len(depth_points) == 4

    # test repr
    expected_repr = 'DepthPoints(\n    '\
        'tensor([[ 9.0722e+00,  4.7368e+01, -2.5382e+00,  '\
        '6.6660e-01,  1.9560e-01,\n          4.9740e-01,  '\
        '9.4090e-01],\n        '\
        '[-2.6685e+01,  1.4790e+01, -8.0455e+00,  1.5020e-01,  '\
        '3.7070e-01,\n          '\
        '1.0860e-01,  6.2970e-01],\n        '\
        '[ 6.8547e+00,  4.2251e+01, -2.5955e+00,  6.5650e-01,  '\
        '6.2480e-01,\n          '\
        '6.9540e-01,  2.5380e-01],\n        '\
        '[-3.3628e+01,  1.1234e+01, -8.2176e+00,  2.8030e-01,  '\
        '2.5800e-02,\n          '\
        '4.8960e-01,  3.2690e-01]]))'
    assert expected_repr == str(depth_points)

    # test concatenate
    depth_points_clone = depth_points.clone()
    cat_points = DepthPoints.cat([depth_points, depth_points_clone])
    assert torch.allclose(cat_points.tensor[:len(depth_points)],
                          depth_points.tensor)

    # test iteration
    for i, point in enumerate(depth_points):
        assert torch.allclose(point, depth_points.tensor[i])

    # test new_point
    new_points = depth_points.new_point([[1, 2, 3, 4, 5, 6, 7]])
    assert torch.allclose(
        new_points.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=depth_points.tensor.dtype))

    # test in_range_bev
    point_bev_range = [-30, -40, 30, 40]
    in_range_flags = depth_points.in_range_bev(point_bev_range)
    expected_flags = torch.tensor([False, True, False, False])
    assert torch.all(in_range_flags == expected_flags)

    # test flip
    depth_points.flip(bev_direction='horizontal')
    expected_tensor = torch.tensor([[
        -9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        2.6685e+01, 1.4790e+01, -8.0455e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        -6.8547e+00, 4.2251e+01, -2.5955e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        3.3628e+01, 1.1234e+01, -8.2176e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-4)

    depth_points.flip(bev_direction='vertical')
    expected_tensor = torch.tensor([[
        -9.0722e+00, -4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        2.6685e+01, -1.4790e+01, -8.0455e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        -6.8547e+00, -4.2251e+01, -2.5955e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        3.3628e+01, -1.1234e+01, -8.2176e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-4)
def test_global_rot_scale_trans():
    angle = 0.78539816
    scale = [0.95, 1.05]
    trans_std = 1.0

    # rot_range should be a number or seq of numbers
    with pytest.raises(AssertionError):
        global_rot_scale_trans = GlobalRotScaleTrans(rot_range='0.0')

    # scale_ratio_range should be seq of numbers
    with pytest.raises(AssertionError):
        global_rot_scale_trans = GlobalRotScaleTrans(scale_ratio_range=1.0)

    # translation_std should be a number or seq of numbers
    with pytest.raises(AssertionError):
        global_rot_scale_trans = GlobalRotScaleTrans(translation_std='0.0')

    global_rot_scale_trans = GlobalRotScaleTrans(rot_range=angle,
                                                 scale_ratio_range=scale,
                                                 translation_std=trans_std,
                                                 shift_height=False)

    np.random.seed(0)
    points = np.fromfile('tests/data/scannet/points/scene0000_00.bin',
                         np.float32).reshape(-1, 6)
    annos = mmcv.load('tests/data/scannet/scannet_infos.pkl')
    info = annos[0]
    gt_bboxes_3d = info['annos']['gt_boxes_upright_depth']

    depth_points = DepthPoints(points.copy(),
                               points_dim=6,
                               attribute_dims=dict(color=[3, 4, 5]))
    gt_bboxes_3d = DepthInstance3DBoxes(gt_bboxes_3d.copy(),
                                        box_dim=gt_bboxes_3d.shape[-1],
                                        with_yaw=False,
                                        origin=(0.5, 0.5, 0.5))

    input_dict = dict(points=depth_points.clone(),
                      bbox3d_fields=['gt_bboxes_3d'],
                      gt_bboxes_3d=gt_bboxes_3d.clone())

    input_dict = global_rot_scale_trans(input_dict)
    trans_depth_points = input_dict['points']
    trans_bboxes_3d = input_dict['gt_bboxes_3d']

    noise_rot = 0.07667607233534723
    scale_factor = 1.021518936637242
    trans_factor = np.array([0.97873798, 2.2408932, 1.86755799])

    true_depth_points = depth_points.clone()
    true_bboxes_3d = gt_bboxes_3d.clone()
    true_depth_points, noise_rot_mat_T = true_bboxes_3d.rotate(
        noise_rot, true_depth_points)
    true_bboxes_3d.scale(scale_factor)
    true_bboxes_3d.translate(trans_factor)
    true_depth_points.scale(scale_factor)
    true_depth_points.translate(trans_factor)

    assert torch.allclose(trans_depth_points.tensor,
                          true_depth_points.tensor,
                          atol=1e-6)
    assert torch.allclose(trans_bboxes_3d.tensor,
                          true_bboxes_3d.tensor,
                          atol=1e-6)
    assert input_dict['pcd_scale_factor'] == scale_factor
    assert torch.allclose(input_dict['pcd_rotation'],
                          noise_rot_mat_T,
                          atol=1e-6)
    assert np.allclose(input_dict['pcd_trans'], trans_factor)

    repr_str = repr(global_rot_scale_trans)
    expected_repr_str = f'GlobalRotScaleTrans(rot_range={[-angle, angle]},' \
                        f' scale_ratio_range={scale},' \
                        f' translation_std={[trans_std for _ in range(3)]},' \
                        f' shift_height=False)'
    assert repr_str == expected_repr_str

    # points with shift_height but no bbox
    global_rot_scale_trans = GlobalRotScaleTrans(rot_range=angle,
                                                 scale_ratio_range=scale,
                                                 translation_std=trans_std,
                                                 shift_height=True)

    # points should have height attribute when shift_height=True
    with pytest.raises(AssertionError):
        input_dict = global_rot_scale_trans(input_dict)

    np.random.seed(0)
    shift_height = points[:, 2:3] * 0.99
    points = np.concatenate([points, shift_height], axis=1)
    depth_points = DepthPoints(points.copy(),
                               points_dim=7,
                               attribute_dims=dict(color=[3, 4, 5], height=6))

    input_dict = dict(points=depth_points.clone(), bbox3d_fields=[])

    input_dict = global_rot_scale_trans(input_dict)
    trans_depth_points = input_dict['points']
    true_shift_height = shift_height * scale_factor

    assert np.allclose(
        trans_depth_points.tensor.numpy(),
        np.concatenate([true_depth_points.tensor.numpy(), true_shift_height],
                       axis=1),
        atol=1e-6)