Example #1
0
    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    normal_init(m, std=0.001)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
                    constant_init(m, 1)

            if self.zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck):
                        constant_init(m.norm3, 0)
                    elif isinstance(m, BasicBlock):
                        constant_init(m.norm2, 0)
        else:
            raise TypeError('pretrained must be a str or None')
Example #2
0
    def init_weights(self, pretrained=None):
        """Initialize model weights."""
        if isinstance(pretrained, str):
            logger = get_root_logger()
            state_dict = get_state_dict(pretrained)
            load_state_dict(
                self.top, state_dict['top'], strict=False, logger=logger)
            for i in range(self.num_stages):
                load_state_dict(
                    self.multi_stage_mspn[i].downsample,
                    state_dict['bottlenecks'],
                    strict=False,
                    logger=logger)

        for m in self.multi_stage_mspn.modules():
            if isinstance(m, nn.Conv2d):
                kaiming_init(m)
            elif isinstance(m, nn.BatchNorm2d):
                constant_init(m, 1)
            elif isinstance(m, nn.Linear):
                normal_init(m, std=0.01)

        for m in self.top.modules():
            if isinstance(m, nn.Conv2d):
                kaiming_init(m)
def main():
    parser = argparse.ArgumentParser(description='Benchmark dataloading')
    parser.add_argument('config', help='train config file path')
    args = parser.parse_args()
    cfg = Config.fromfile(args.config)

    # init logger before other steps
    logger = get_root_logger()
    logger.info(f'MMPose Version: {__version__}')
    logger.info(f'Config: {cfg.text}')

    dataset = build_dataset(cfg.data.train)
    data_loader = build_dataloader(
        dataset,
        samples_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=False,
        shuffle=False)

    # Start progress bar after first 5 batches
    prog_bar = mmcv.ProgressBar(
        len(dataset) - 5 * cfg.data.samples_per_gpu, start=False)
    for i, data in enumerate(data_loader):
        if i == 5:
            prog_bar.start()
        for _ in data['img']:
            if i < 5:
                continue
            prog_bar.update()
Example #4
0
    def __init__(self,
                 dataloader,
                 interval=1,
                 gpu_collect=False,
                 save_best=True,
                 key_indicator='AP',
                 rule=None,
                 **eval_kwargs):
        if not isinstance(dataloader, DataLoader):
            raise TypeError(f'dataloader must be a pytorch DataLoader, '
                            f'but got {type(dataloader)}')
        if save_best and not key_indicator:
            raise ValueError('key_indicator should not be None, when '
                             'save_best is set to True.')
        if rule not in self.rule_map and rule is not None:
            raise KeyError(f'rule must be greater, less or None, '
                           f'but got {rule}.')

        if rule is None and save_best:
            if any(key in key_indicator.lower() for key in self.greater_keys):
                rule = 'greater'
            elif any(key in key_indicator.lower() for key in self.less_keys):
                rule = 'less'
            else:
                raise ValueError(
                    f'key_indicator must be in {self.greater_keys} '
                    f'or in {self.less_keys} when rule is None, '
                    f'but got {key_indicator}')

        self.dataloader = dataloader
        self.interval = interval
        self.gpu_collect = gpu_collect
        self.eval_kwargs = eval_kwargs
        self.save_best = save_best
        self.key_indicator = key_indicator
        self.rule = rule

        self.logger = get_root_logger()

        if self.save_best:
            self.compare_func = self.rule_map[self.rule]
            self.best_score = self.init_value_map[self.rule]

        self.best_json = dict()
Example #5
0
    def init_weights(self, pretrained=None):
        """Initialize model weights."""
        if isinstance(pretrained, str):
            logger = get_root_logger()
            state_dict_tmp = get_state_dict(pretrained)
            state_dict = OrderedDict()
            state_dict['top'] = OrderedDict()
            state_dict['bottlenecks'] = OrderedDict()
            for k, v in state_dict_tmp.items():
                if k.startswith('layer'):
                    if 'downsample.0' in k:
                        state_dict['bottlenecks'][k.replace(
                            'downsample.0', 'downsample.conv')] = v
                    elif 'downsample.1' in k:
                        state_dict['bottlenecks'][k.replace(
                            'downsample.1', 'downsample.bn')] = v
                    else:
                        state_dict['bottlenecks'][k] = v
                elif k.startswith('conv1'):
                    state_dict['top'][k.replace('conv1', 'top.0.conv')] = v
                elif k.startswith('bn1'):
                    state_dict['top'][k.replace('bn1', 'top.0.bn')] = v

            load_state_dict(self.top,
                            state_dict['top'],
                            strict=False,
                            logger=logger)
            for i in range(self.num_stages):
                load_state_dict(self.multi_stage_mspn[i].downsample,
                                state_dict['bottlenecks'],
                                strict=False,
                                logger=logger)
        else:
            for m in self.multi_stage_mspn.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
                elif isinstance(m, nn.Linear):
                    normal_init(m, std=0.01)

            for m in self.top.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
Example #6
0
def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)

    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
        cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')

    # set random seeds
    if args.seed is not None:
        logger.info(f'Set random seed to {args.seed}, '
                    f'deterministic: {args.deterministic}')
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    model = build_posenet(cfg.model)
    datasets = [build_dataset(cfg.data.train)]

    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))

    if cfg.checkpoint_config is not None:
        # save mmpose version, config file content
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmpose_version=__version__ + get_git_hash(digits=7),
            config=cfg.pretty_text,
        )
    train_model(
        model,
        datasets,
        cfg,
        distributed=distributed,
        validate=(not args.no_validate),
        timestamp=timestamp,
        meta=meta)
Example #7
0
def train_model(model,
                dataset,
                cfg,
                distributed=False,
                validate=False,
                timestamp=None,
                meta=None):
    """Train model entry function.

    Args:
        model (nn.Module): The model to be trained.
        dataset (Dataset): Train dataset.
        cfg (dict): The config dict for training.
        distributed (bool): Whether to use distributed training.
            Default: False.
        validate (bool): Whether to do evaluation. Default: False.
        timestamp (str | None): Local time for runner. Default: None.
        meta (dict | None): Meta dict to record some important information.
            Default: None
    """
    logger = get_root_logger(cfg.log_level)

    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    # step 1: give default values and override (if exist) from cfg.data
    loader_cfg = {
        **dict(
            seed=cfg.get('seed'),
            drop_last=False,
            dist=distributed,
            num_gpus=len(cfg.gpu_ids)),
        **({} if torch.__version__ != 'parrots' else dict(
               prefetch_num=2,
               pin_memory=False,
           )),
        **dict((k, cfg.data[k]) for k in [
                   'samples_per_gpu',
                   'workers_per_gpu',
                   'shuffle',
                   'seed',
                   'drop_last',
                   'prefetch_num',
                   'pin_memory',
                   'persistent_workers',
               ] if k in cfg.data)
    }

    # step 2: cfg.data.train_dataloader has highest priority
    train_loader_cfg = dict(loader_cfg, **cfg.data.get('train_dataloader', {}))

    data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]

    # determine whether use adversarial training precess or not
    use_adverserial_train = cfg.get('use_adversarial_train', False)

    # put model on gpus
    if distributed:
        find_unused_parameters = cfg.get('find_unused_parameters', True)
        # Sets the `find_unused_parameters` parameter in
        # torch.nn.parallel.DistributedDataParallel

        if use_adverserial_train:
            # Use DistributedDataParallelWrapper for adversarial training
            model = DistributedDataParallelWrapper(
                model,
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False,
                find_unused_parameters=find_unused_parameters)
        else:
            model = MMDistributedDataParallel(
                model.cuda(),
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False,
                find_unused_parameters=find_unused_parameters)
    else:
        model = MMDataParallel(
            model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids)

    # build runner
    optimizer = build_optimizers(model, cfg.optimizer)

    runner = EpochBasedRunner(
        model,
        optimizer=optimizer,
        work_dir=cfg.work_dir,
        logger=logger,
        meta=meta)
    # an ugly workaround to make .log and .log.json filenames the same
    runner.timestamp = timestamp

    if use_adverserial_train:
        # The optimizer step process is included in the train_step function
        # of the model, so the runner should NOT include optimizer hook.
        optimizer_config = None
    else:
        # fp16 setting
        fp16_cfg = cfg.get('fp16', None)
        if fp16_cfg is not None:
            optimizer_config = Fp16OptimizerHook(
                **cfg.optimizer_config, **fp16_cfg, distributed=distributed)
        elif distributed and 'type' not in cfg.optimizer_config:
            optimizer_config = OptimizerHook(**cfg.optimizer_config)
        else:
            optimizer_config = cfg.optimizer_config

    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config,
                                   cfg.get('momentum_config', None))
    if distributed:
        runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        eval_cfg = cfg.get('evaluation', {})
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        dataloader_setting = dict(
            samples_per_gpu=1,
            workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
            # cfg.gpus will be ignored if distributed
            num_gpus=len(cfg.gpu_ids),
            dist=distributed,
            drop_last=False,
            shuffle=False)
        dataloader_setting = dict(dataloader_setting,
                                  **cfg.data.get('val_dataloader', {}))
        val_dataloader = build_dataloader(val_dataset, **dataloader_setting)
        eval_hook = DistEvalHook if distributed else EvalHook
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #8
0
def test_logger(capsys):
    logger = get_root_logger()
    logger.warning('hello')
    captured = capsys.readouterr()
    assert captured.err.endswith('mmpose - WARNING - hello\n')
Example #9
0
def train_model(model,
                dataset,
                cfg,
                distributed=False,
                validate=False,
                timestamp=None,
                meta=None):
    """Train model entry function.

    Args:
        model (nn.Module): The model to be trained.
        dataset (Dataset): Train dataset.
        cfg (dict): The config dict for training.
        distributed (bool): Whether to use distributed training.
            Default: False.
        validate (bool): Whether to do evaluation. Default: False.
        timestamp (str | None): Local time for runner. Default: None.
        meta (dict | None): Meta dict to record some important information.
            Default: None
    """
    logger = get_root_logger(cfg.log_level)

    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    dataloader_setting = dict(
        samples_per_gpu=cfg.data.get('samples_per_gpu', {}),
        workers_per_gpu=cfg.data.get('workers_per_gpu', {}),
        # cfg.gpus will be ignored if distributed
        num_gpus=len(cfg.gpu_ids),
        dist=distributed,
        seed=cfg.seed)
    dataloader_setting = dict(dataloader_setting,
                              **cfg.data.get('train_dataloader', {}))

    data_loaders = [
        build_dataloader(ds, **dataloader_setting) for ds in dataset
    ]

    # put model on gpus
    if distributed:
        find_unused_parameters = cfg.get('find_unused_parameters', True)
        # Sets the `find_unused_parameters` parameter in
        # torch.nn.parallel.DistributedDataParallel
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)
    else:
        model = MMDataParallel(model.cuda(cfg.gpu_ids[0]),
                               device_ids=cfg.gpu_ids)

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = EpochBasedRunner(model,
                              optimizer=optimizer,
                              work_dir=cfg.work_dir,
                              logger=logger,
                              meta=meta)
    # an ugly workaround to make .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg,
                                             distributed=distributed)
    elif distributed and 'type' not in cfg.optimizer_config:
        optimizer_config = OptimizerHook(**cfg.optimizer_config)
    else:
        optimizer_config = cfg.optimizer_config

    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config,
                                   cfg.get('momentum_config', None))
    if distributed:
        runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        eval_cfg = cfg.get('evaluation', {})
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        dataloader_setting = dict(
            # samples_per_gpu=cfg.data.get('samples_per_gpu', {}),
            samples_per_gpu=1,
            workers_per_gpu=cfg.data.get('workers_per_gpu', {}),
            # cfg.gpus will be ignored if distributed
            num_gpus=len(cfg.gpu_ids),
            dist=distributed,
            shuffle=False)
        dataloader_setting = dict(dataloader_setting,
                                  **cfg.data.get('val_dataloader', {}))
        val_dataloader = build_dataloader(val_dataset, **dataloader_setting)
        eval_hook = DistEvalHook if distributed else EvalHook
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #10
0
    def add_params(self, params, module, **kwargs):
        """Add all parameters of module to the params list.

        The parameters of the given module will be added to the list of param
        groups, with specific rules defined by paramwise_cfg.

        Args:
            params (list[dict]): A list of param groups, it will be modified
                in place.
            module (nn.Module): The module to be added.
        """
        logger = get_root_logger()

        parameter_groups = {}
        logger.info(f'self.paramwise_cfg is {self.paramwise_cfg}')
        num_layers = self.paramwise_cfg.get('num_layers') + 2
        decay_rate = self.paramwise_cfg.get('decay_rate')
        decay_type = self.paramwise_cfg.get('decay_type', 'layer_wise')
        logger.info('Build LearningRateDecayOptimizerConstructor  '
                    f'{decay_type} {decay_rate} - {num_layers}')
        weight_decay = self.base_wd
        for name, param in module.named_parameters():
            if not param.requires_grad:
                continue  # frozen weights
            if len(param.shape) == 1 or name.endswith('.bias') or name in (
                    'pos_embed', 'cls_token'):
                group_name = 'no_decay'
                this_weight_decay = 0.
            else:
                group_name = 'decay'
                this_weight_decay = weight_decay
            if 'layer_wise' in decay_type:
                if 'ConvNeXt' in module.backbone.__class__.__name__:
                    layer_id = get_layer_id_for_convnext(
                        name, self.paramwise_cfg.get('num_layers'))
                    logger.info(f'set param {name} as id {layer_id}')
                elif 'BEiT' in module.backbone.__class__.__name__ or \
                     'MAE' in module.backbone.__class__.__name__:
                    layer_id = get_layer_id_for_vit(name, num_layers)
                    logger.info(f'set param {name} as id {layer_id}')
                else:
                    raise NotImplementedError()
            elif decay_type == 'stage_wise':
                if 'ConvNeXt' in module.backbone.__class__.__name__:
                    layer_id = get_stage_id_for_convnext(name, num_layers)
                    logger.info(f'set param {name} as id {layer_id}')
                else:
                    raise NotImplementedError()
            group_name = f'layer_{layer_id}_{group_name}'

            if group_name not in parameter_groups:
                scale = decay_rate**(num_layers - layer_id - 1)

                parameter_groups[group_name] = {
                    'weight_decay': this_weight_decay,
                    'params': [],
                    'param_names': [],
                    'lr_scale': scale,
                    'group_name': group_name,
                    'lr': scale * self.base_lr,
                }

            parameter_groups[group_name]['params'].append(param)
            parameter_groups[group_name]['param_names'].append(name)
        rank, _ = get_dist_info()
        if rank == 0:
            to_display = {}
            for key in parameter_groups:
                to_display[key] = {
                    'param_names': parameter_groups[key]['param_names'],
                    'lr_scale': parameter_groups[key]['lr_scale'],
                    'lr': parameter_groups[key]['lr'],
                    'weight_decay': parameter_groups[key]['weight_decay'],
                }
            logger.info(f'Param groups = {json.dumps(to_display, indent=2)}')
        params.extend(parameter_groups.values())