Example #1
0
def eval_1(args):
    first_file = open(args[0]).read().splitlines()
    #
    for line in first_file:
        if (line.startswith("pdb_file = ")):
            pdb_file = line.split(" ", 2)[2]
            assert pdb_file[0] == pdb_file[-1]
            assert pdb_file[0] in ['"', "'"]
            pdb_file = op.basename(pdb_file[1:-1])
            break
    else:
        raise RuntimeError('pdb_file = "..." not found.')
    #
    for line in first_file:
        if (line ==
                "random_displacements_parameterization = *constrained cartesian"
            ):
            random_displacements_parameterization = "constrained"
            break
        elif (line ==
              "random_displacements_parameterization = constrained *cartesian"
              ):
            random_displacements_parameterization = "cartesian"
            break
    else:
        raise RuntimeError(
            "random_displacements_parameterization = constrained or cartesian"
            " not found.")
    #
    for line in first_file:
        if (line == "algorithm = *minimization annealing"):
            algorithm = "minimization"
            break
        elif (line == "algorithm = minimization *annealing"):
            algorithm = "annealing"
            break
    else:
        raise RuntimeError("algorithm = minimization or annealing not found.")
    #
    del first_file
    #
    tst_tardy_pdb_master_phil = tst_tardy_pdb.get_master_phil()
    tst_tardy_pdb_params = tst_tardy_pdb_master_phil.extract()
    if (algorithm == "minimization"):
        parameter_trial_table \
          = tst_tardy_comprehensive.common_parameter_trial_table
    elif (algorithm == "annealing"):
        parameter_trial_table \
          = tst_tardy_comprehensive.annealing_parameter_trial_table
    else:
        raise AssertionError
    cp_n_trials = tst_tardy_comprehensive.number_of_trials(
        table=parameter_trial_table)
    #
    random_seed_rmsd = []
    for cp_i_trial in xrange(cp_n_trials):
        random_seed_rmsd.append({})
    for file_name in args:
        for line in open(file_name).read().splitlines():
            if (not line.startswith("RESULT_cp_i_trial_random_seed_rmsd: ")):
                continue
            flds = line.split(None, 3)
            assert len(flds) == 4
            cp_i_trial = int(flds[1])
            random_seed = int(flds[2])
            rmsd = flex.double(eval(flds[3]))
            assert not random_seed_rmsd[cp_i_trial].has_key(random_seed)
            random_seed_rmsd[cp_i_trial][random_seed] = rmsd
    random_seeds_found = dict_with_default_0()
    for cp_i_trial in xrange(cp_n_trials):
        random_seeds_found[tuple(sorted(
            random_seed_rmsd[cp_i_trial].keys()))] += 1
    if (len(random_seeds_found) != 1):
        print random_seeds_found
        raise RuntimeError("Unexpected random_seeds_found (see output).")
    assert random_seeds_found.values()[0] == cp_n_trials
    random_seeds_found = random_seeds_found.keys()[0]
    assert random_seeds_found == tuple(range(len(random_seeds_found)))
    rmsds = []
    for cp_i_trial in xrange(cp_n_trials):
        rmsds.append([
            random_seed_rmsd[cp_i_trial][random_seed]
            for random_seed in xrange(len(random_seeds_found))
        ])
    #
    write_separate_pages = False
    if (algorithm == "minimization"):
        rmsd_start_final_plots_minimization(
            pdb_file=pdb_file,
            random_displacements_parameterization=
            random_displacements_parameterization,
            tst_tardy_pdb_params=tst_tardy_pdb_params,
            parameter_trial_table=parameter_trial_table,
            cp_n_trials=cp_n_trials,
            rmsds=rmsds,
            rmsd_n_n=50,
            write_separate_pages=write_separate_pages)
    elif (algorithm == "annealing"):
        rmsd_start_final_plots_annealing(
            pdb_file=pdb_file,
            random_displacements_parameterization=
            random_displacements_parameterization,
            tst_tardy_pdb_params=tst_tardy_pdb_params,
            parameter_trial_table=parameter_trial_table,
            cp_n_trials=cp_n_trials,
            rmsds=rmsds,
            write_separate_pages=write_separate_pages)
Example #2
0
def eval_1(args):
  first_file = open(args[0]).read().splitlines()
  #
  for line in first_file:
    if (line.startswith("pdb_file = ")):
      pdb_file = line.split(" ", 2)[2]
      assert pdb_file[0] == pdb_file[-1]
      assert pdb_file[0] in ['"', "'"]
      pdb_file = op.basename(pdb_file[1:-1])
      break
  else:
    raise RuntimeError('pdb_file = "..." not found.')
  #
  for line in first_file:
    if   (line ==
            "random_displacements_parameterization = *constrained cartesian"):
      random_displacements_parameterization = "constrained"
      break
    elif (line ==
            "random_displacements_parameterization = constrained *cartesian"):
      random_displacements_parameterization = "cartesian"
      break
  else:
    raise RuntimeError(
      "random_displacements_parameterization = constrained or cartesian"
      " not found.")
  #
  for line in first_file:
    if (line == "algorithm = *minimization annealing"):
      algorithm = "minimization"
      break
    elif (line == "algorithm = minimization *annealing"):
      algorithm = "annealing"
      break
  else:
    raise RuntimeError("algorithm = minimization or annealing not found.")
  #
  del first_file
  #
  tst_tardy_pdb_master_phil = tst_tardy_pdb.get_master_phil()
  tst_tardy_pdb_params = tst_tardy_pdb_master_phil.extract()
  if (algorithm == "minimization"):
    parameter_trial_table \
      = tst_tardy_comprehensive.common_parameter_trial_table
  elif (algorithm == "annealing"):
    parameter_trial_table \
      = tst_tardy_comprehensive.annealing_parameter_trial_table
  else:
    raise AssertionError
  cp_n_trials = tst_tardy_comprehensive.number_of_trials(
    table=parameter_trial_table)
  #
  random_seed_rmsd = []
  for cp_i_trial in xrange(cp_n_trials):
    random_seed_rmsd.append({})
  for file_name in args:
    for line in open(file_name).read().splitlines():
      if (not line.startswith("RESULT_cp_i_trial_random_seed_rmsd: ")):
        continue
      flds = line.split(None, 3)
      assert len(flds) == 4
      cp_i_trial = int(flds[1])
      random_seed = int(flds[2])
      rmsd = flex.double(eval(flds[3]))
      assert not random_seed_rmsd[cp_i_trial].has_key(random_seed)
      random_seed_rmsd[cp_i_trial][random_seed] = rmsd
  random_seeds_found = dict_with_default_0()
  for cp_i_trial in xrange(cp_n_trials):
    random_seeds_found[tuple(sorted(random_seed_rmsd[cp_i_trial].keys()))] += 1
  if (len(random_seeds_found) != 1):
    print random_seeds_found
    raise RuntimeError("Unexpected random_seeds_found (see output).")
  assert random_seeds_found.values()[0] == cp_n_trials
  random_seeds_found = random_seeds_found.keys()[0]
  assert random_seeds_found == tuple(range(len(random_seeds_found)))
  rmsds = []
  for cp_i_trial in xrange(cp_n_trials):
    rmsds.append([random_seed_rmsd[cp_i_trial][random_seed]
      for random_seed in xrange(len(random_seeds_found))])
  #
  write_separate_pages = False
  if (algorithm == "minimization"):
    rmsd_start_final_plots_minimization(
      pdb_file=pdb_file,
      random_displacements_parameterization
        =random_displacements_parameterization,
      tst_tardy_pdb_params=tst_tardy_pdb_params,
      parameter_trial_table=parameter_trial_table,
      cp_n_trials=cp_n_trials,
      rmsds=rmsds,
      rmsd_n_n=50,
      write_separate_pages=write_separate_pages)
  elif (algorithm == "annealing"):
    rmsd_start_final_plots_annealing(
      pdb_file=pdb_file,
      random_displacements_parameterization
        =random_displacements_parameterization,
      tst_tardy_pdb_params=tst_tardy_pdb_params,
      parameter_trial_table=parameter_trial_table,
      cp_n_trials=cp_n_trials,
      rmsds=rmsds,
      write_separate_pages=write_separate_pages)
def run(args):
    local_master_phil = get_master_phil()
    argument_interpreter = local_master_phil.command_line_argument_interpreter(
    )
    phil_objects = []
    for arg in args:
        phil_objects.append(argument_interpreter.process(arg=arg))
    local_params = local_master_phil.fetch(sources=phil_objects).extract()
    chunk = chunk_manager(n=local_params.chunk[0],
                          i=local_params.chunk[1]).easy_all()
    local_master_phil.format(local_params).show()
    print
    #
    assert local_params.pdb_file is not None
    assert op.isfile(local_params.pdb_file)
    #
    tst_tardy_pdb_master_phil = tst_tardy_pdb.get_master_phil()
    tst_tardy_pdb_params = tst_tardy_pdb_master_phil.extract()
    tst_tardy_pdb_params.tardy_displacements = Auto
    tst_tardy_pdb_params.tardy_displacements_auto.parameterization \
      = local_params.random_displacements_parameterization
    if (local_params.algorithm == "minimization"):
        parameter_trial_table = common_parameter_trial_table
    elif (local_params.algorithm == "annealing"):
        parameter_trial_table = annealing_parameter_trial_table
    else:
        raise AssertionError
    cp_n_trials = number_of_trials(table=parameter_trial_table)
    print "Number of parameter trials:", cp_n_trials
    print "parameter_trial_table:"
    pprint.pprint(parameter_trial_table)
    print
    #
    show_times_at_exit()
    #
    params_shown_once_already = False
    tst_tardy_pdb_log_shown_once_already = False
    for cp_i_trial in xrange(cp_n_trials):
        if (chunk.skip_iteration(i=cp_i_trial)): continue
        print "cp_i_trial: %d / %d = %.2f %%" % (cp_i_trial, cp_n_trials, 100 *
                                                 (cp_i_trial + 1) /
                                                 cp_n_trials)
        if (local_params.verbose):
            print
        sys.stdout.flush()
        set_parameters(params=tst_tardy_pdb_params,
                       trial_table=parameter_trial_table,
                       cp_i_trial=cp_i_trial)
        if (local_params.algorithm == "minimization"):
            if (local_params.orca_experiments):
                tst_tardy_pdb_params.keep_all_restraints = True
                if (tst_tardy_pdb_params.emulate_cartesian):
                    tst_tardy_pdb_params.orca_experiments = False
                else:
                    tst_tardy_pdb_params.orca_experiments = True
            tst_tardy_pdb_params.number_of_cooling_steps = 0
            tst_tardy_pdb_params.minimization_max_iterations = None
        elif (local_params.algorithm == "annealing"):
            tst_tardy_pdb_params.number_of_time_steps = 1
            tst_tardy_pdb_params.time_step_pico_seconds = 0.001
            tst_tardy_pdb_params.minimization_max_iterations = 0
        else:
            raise AssertionError
        for random_seed in xrange(local_params.number_of_random_trials):
            tst_tardy_pdb_params.random_seed = random_seed
            tst_tardy_pdb_params.dihedral_function_type \
              = local_params.dihedral_function_type
            if (local_params.verbose or not params_shown_once_already):
                params_shown_once_already = True
                tst_tardy_pdb_master_phil.format(tst_tardy_pdb_params).show()
                print
                sys.stdout.flush()
            if (local_params.hot):
                if (local_params.verbose):
                    tst_tardy_pdb_log = sys.stdout
                else:
                    tst_tardy_pdb_log = StringIO()
                coll = collector()
                try:
                    tst_tardy_pdb.run_test(params=tst_tardy_pdb_params,
                                           pdb_files=[local_params.pdb_file],
                                           other_files=[],
                                           callback=coll,
                                           log=tst_tardy_pdb_log)
                except KeyboardInterrupt:
                    raise
                except Exception:
                    print
                    print "tst_tardy_pdb_params leading to exception:"
                    print
                    tst_tardy_pdb_master_phil.format(
                        tst_tardy_pdb_params).show()
                    print
                    if (not local_params.verbose):
                        sys.stdout.write(tst_tardy_pdb_log.getvalue())
                    sys.stdout.flush()
                    if (not local_params.keep_going):
                        raise
                    report_exception(
                        context_info="cp_i_trial=%d, random_seed=%d" %
                        (cp_i_trial, random_seed))
                else:
                    if (not local_params.verbose
                            and not tst_tardy_pdb_log_shown_once_already):
                        tst_tardy_pdb_log_shown_once_already = True
                        sys.stdout.write(tst_tardy_pdb_log.getvalue())
                    print "RESULT_cp_i_trial_random_seed_rmsd:", \
                      cp_i_trial, random_seed, list(coll.rmsd)
                    sys.stdout.flush()
            first_pass = False
        if (local_params.hot):
            print
def run(args):
  local_master_phil = get_master_phil()
  argument_interpreter = local_master_phil.command_line_argument_interpreter()
  phil_objects = []
  for arg in args:
    phil_objects.append(argument_interpreter.process(arg=arg))
  local_params = local_master_phil.fetch(sources=phil_objects).extract()
  chunk = chunk_manager(
    n=local_params.chunk[0],
    i=local_params.chunk[1]).easy_all()
  local_master_phil.format(local_params).show()
  print
  #
  assert local_params.pdb_file is not None
  assert op.isfile(local_params.pdb_file)
  #
  tst_tardy_pdb_master_phil = tst_tardy_pdb.get_master_phil()
  tst_tardy_pdb_params = tst_tardy_pdb_master_phil.extract()
  tst_tardy_pdb_params.tardy_displacements = Auto
  tst_tardy_pdb_params.tardy_displacements_auto.parameterization \
    = local_params.random_displacements_parameterization
  if (local_params.algorithm == "minimization"):
    parameter_trial_table = common_parameter_trial_table
  elif (local_params.algorithm == "annealing"):
    parameter_trial_table = annealing_parameter_trial_table
  else:
    raise AssertionError
  cp_n_trials = number_of_trials(table=parameter_trial_table)
  print "Number of parameter trials:", cp_n_trials
  print "parameter_trial_table:"
  pprint.pprint(parameter_trial_table)
  print
  #
  show_times_at_exit()
  #
  params_shown_once_already = False
  tst_tardy_pdb_log_shown_once_already = False
  for cp_i_trial in xrange(cp_n_trials):
    if (chunk.skip_iteration(i=cp_i_trial)): continue
    print "cp_i_trial: %d / %d = %.2f %%" % (
      cp_i_trial, cp_n_trials, 100 * (cp_i_trial+1) / cp_n_trials)
    if (local_params.verbose):
      print
    sys.stdout.flush()
    set_parameters(
      params=tst_tardy_pdb_params,
      trial_table=parameter_trial_table,
      cp_i_trial=cp_i_trial)
    if (local_params.algorithm == "minimization"):
      if (local_params.orca_experiments):
        tst_tardy_pdb_params.keep_all_restraints = True
        if (tst_tardy_pdb_params.emulate_cartesian):
          tst_tardy_pdb_params.orca_experiments = False
        else:
          tst_tardy_pdb_params.orca_experiments = True
      tst_tardy_pdb_params.number_of_cooling_steps = 0
      tst_tardy_pdb_params.minimization_max_iterations = None
    elif (local_params.algorithm == "annealing"):
      tst_tardy_pdb_params.number_of_time_steps = 1
      tst_tardy_pdb_params.time_step_pico_seconds = 0.001
      tst_tardy_pdb_params.minimization_max_iterations = 0
    else:
      raise AssertionError
    for random_seed in xrange(local_params.number_of_random_trials):
      tst_tardy_pdb_params.random_seed = random_seed
      tst_tardy_pdb_params.dihedral_function_type \
        = local_params.dihedral_function_type
      if (local_params.verbose or not params_shown_once_already):
        params_shown_once_already = True
        tst_tardy_pdb_master_phil.format(tst_tardy_pdb_params).show()
        print
        sys.stdout.flush()
      if (local_params.hot):
        if (local_params.verbose):
          tst_tardy_pdb_log = sys.stdout
        else:
          tst_tardy_pdb_log = StringIO()
        coll = collector()
        try:
          tst_tardy_pdb.run_test(
            params=tst_tardy_pdb_params,
            pdb_files=[local_params.pdb_file],
            other_files=[],
            callback=coll,
            log=tst_tardy_pdb_log)
        except KeyboardInterrupt: raise
        except Exception:
          print
          print "tst_tardy_pdb_params leading to exception:"
          print
          tst_tardy_pdb_master_phil.format(tst_tardy_pdb_params).show()
          print
          if (not local_params.verbose):
            sys.stdout.write(tst_tardy_pdb_log.getvalue())
          sys.stdout.flush()
          if (not local_params.keep_going):
            raise
          report_exception(
            context_info="cp_i_trial=%d, random_seed=%d" % (
              cp_i_trial, random_seed))
        else:
          if (    not local_params.verbose
              and not tst_tardy_pdb_log_shown_once_already):
            tst_tardy_pdb_log_shown_once_already = True
            sys.stdout.write(tst_tardy_pdb_log.getvalue())
          print "RESULT_cp_i_trial_random_seed_rmsd:", \
            cp_i_trial, random_seed, list(coll.rmsd)
          sys.stdout.flush()
      first_pass = False
    if (local_params.hot):
      print