def test_make_eeg_layout(): """Test creation of EEG layout.""" tempdir = _TempDir() tmp_name = 'foo' lout_name = 'test_raw' lout_orig = read_layout(kind=lout_name, path=lout_path) info = read_info(fif_fname) info['bads'].append(info['ch_names'][360]) layout = make_eeg_layout(info, exclude=[]) assert_array_equal( len(layout.names), len([ch for ch in info['ch_names'] if ch.startswith('EE')])) layout.save(op.join(tempdir, tmp_name + '.lout')) lout_new = read_layout(kind=tmp_name, path=tempdir, scale=False) assert_array_equal(lout_new.kind, tmp_name) assert_allclose(layout.pos, lout_new.pos, atol=0.1) assert_array_equal(lout_orig.names, lout_new.names) # Test input validation pytest.raises(ValueError, make_eeg_layout, info, radius=-0.1) pytest.raises(ValueError, make_eeg_layout, info, radius=0.6) pytest.raises(ValueError, make_eeg_layout, info, width=-0.1) pytest.raises(ValueError, make_eeg_layout, info, width=1.1) pytest.raises(ValueError, make_eeg_layout, info, height=-0.1) pytest.raises(ValueError, make_eeg_layout, info, height=1.1)
def test_make_eeg_layout(): """Test creation of EEG layout""" tempdir = _TempDir() tmp_name = 'foo' lout_name = 'test_raw' lout_orig = read_layout(kind=lout_name, path=lout_path) info = Raw(fif_fname).info layout = make_eeg_layout(info) layout.save(op.join(tempdir, tmp_name + '.lout')) lout_new = read_layout(kind=tmp_name, path=tempdir, scale=False) assert_array_equal(lout_new.kind, tmp_name) assert_allclose(layout.pos, lout_new.pos, atol=0.1) assert_array_equal(lout_orig.names, lout_new.names) # Test input validation assert_raises(ValueError, make_eeg_layout, info, radius=-0.1) assert_raises(ValueError, make_eeg_layout, info, radius=0.6) assert_raises(ValueError, make_eeg_layout, info, width=-0.1) assert_raises(ValueError, make_eeg_layout, info, width=1.1) assert_raises(ValueError, make_eeg_layout, info, height=-0.1) assert_raises(ValueError, make_eeg_layout, info, height=1.1)
def test_make_eeg_layout(): """Test creation of EEG layout""" tempdir = _TempDir() tmp_name = "foo" lout_name = "test_raw" lout_orig = read_layout(kind=lout_name, path=lout_path) info = Raw(fif_fname).info info["bads"].append(info["ch_names"][360]) layout = make_eeg_layout(info, exclude=[]) assert_array_equal(len(layout.names), len([ch for ch in info["ch_names"] if ch.startswith("EE")])) layout.save(op.join(tempdir, tmp_name + ".lout")) lout_new = read_layout(kind=tmp_name, path=tempdir, scale=False) assert_array_equal(lout_new.kind, tmp_name) assert_allclose(layout.pos, lout_new.pos, atol=0.1) assert_array_equal(lout_orig.names, lout_new.names) # Test input validation assert_raises(ValueError, make_eeg_layout, info, radius=-0.1) assert_raises(ValueError, make_eeg_layout, info, radius=0.6) assert_raises(ValueError, make_eeg_layout, info, width=-0.1) assert_raises(ValueError, make_eeg_layout, info, width=1.1) assert_raises(ValueError, make_eeg_layout, info, height=-0.1) assert_raises(ValueError, make_eeg_layout, info, height=1.1)
def test_make_eeg_layout(): """Test creation of EEG layout.""" tempdir = _TempDir() tmp_name = 'foo' lout_name = 'test_raw' lout_orig = read_layout(kind=lout_name, path=lout_path) info = read_info(fif_fname) info['bads'].append(info['ch_names'][360]) layout = make_eeg_layout(info, exclude=[]) assert_array_equal(len(layout.names), len([ch for ch in info['ch_names'] if ch.startswith('EE')])) layout.save(op.join(tempdir, tmp_name + '.lout')) lout_new = read_layout(kind=tmp_name, path=tempdir, scale=False) assert_array_equal(lout_new.kind, tmp_name) assert_allclose(layout.pos, lout_new.pos, atol=0.1) assert_array_equal(lout_orig.names, lout_new.names) # Test input validation pytest.raises(ValueError, make_eeg_layout, info, radius=-0.1) pytest.raises(ValueError, make_eeg_layout, info, radius=0.6) pytest.raises(ValueError, make_eeg_layout, info, width=-0.1) pytest.raises(ValueError, make_eeg_layout, info, width=1.1) pytest.raises(ValueError, make_eeg_layout, info, height=-0.1) pytest.raises(ValueError, make_eeg_layout, info, height=1.1)
def test_plot_topomap(): """Test topomap plotting.""" import matplotlib.pyplot as plt from matplotlib.patches import Circle # evoked warnings.simplefilter('always') res = 8 fast_test = {"res": res, "contours": 0, "sensors": False} evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0)) # Test animation _, anim = evoked.animate_topomap(ch_type='grad', times=[0, 0.1], butterfly=False) anim._func(1) # _animate has to be tested separately on 'Agg' backend. plt.close('all') ev_bad = evoked.copy().pick_types(meg=False, eeg=True) ev_bad.pick_channels(ev_bad.ch_names[:2]) plt_topomap = partial(ev_bad.plot_topomap, **fast_test) plt_topomap(times=ev_bad.times[:2] - 1e-6) # auto, plots EEG assert_raises(ValueError, plt_topomap, ch_type='mag') assert_raises(TypeError, plt_topomap, head_pos='foo') assert_raises(KeyError, plt_topomap, head_pos=dict(foo='bar')) assert_raises(ValueError, plt_topomap, head_pos=dict(center=0)) assert_raises(ValueError, plt_topomap, times=[-100]) # bad time assert_raises(ValueError, plt_topomap, times=[[0]]) # bad time evoked.plot_topomap([0.1], ch_type='eeg', scalings=1, res=res, contours=[-100, 0, 100]) plt_topomap = partial(evoked.plot_topomap, **fast_test) plt_topomap(0.1, layout=layout, scalings=dict(mag=0.1)) plt.close('all') axes = [plt.subplot(221), plt.subplot(222)] plt_topomap(axes=axes, colorbar=False) plt.close('all') plt_topomap(times=[-0.1, 0.2]) plt.close('all') evoked_grad = evoked.copy().crop(0, 0).pick_types(meg='grad') mask = np.zeros((204, 1), bool) mask[[0, 3, 5, 6]] = True names = [] def proc_names(x): names.append(x) return x[4:] evoked_grad.plot_topomap(ch_type='grad', times=[0], mask=mask, show_names=proc_names, **fast_test) assert_equal(sorted(names), ['MEG 011x', 'MEG 012x', 'MEG 013x', 'MEG 014x']) mask = np.zeros_like(evoked.data, dtype=bool) mask[[1, 5], :] = True plt_topomap(ch_type='mag', outlines=None) times = [0.1] plt_topomap(times, ch_type='grad', mask=mask) plt_topomap(times, ch_type='planar1') plt_topomap(times, ch_type='planar2') plt_topomap(times, ch_type='grad', mask=mask, show_names=True, mask_params={'marker': 'x'}) plt.close('all') assert_raises(ValueError, plt_topomap, times, ch_type='eeg', average=-1e3) assert_raises(ValueError, plt_topomap, times, ch_type='eeg', average='x') p = plt_topomap(times, ch_type='grad', image_interp='bilinear', show_names=lambda x: x.replace('MEG', '')) subplot = [ x for x in p.get_children() if isinstance(x, matplotlib.axes.Subplot) ][0] assert_true( all('MEG' not in x.get_text() for x in subplot.get_children() if isinstance(x, matplotlib.text.Text))) # Plot array for ch_type in ('mag', 'grad'): evoked_ = evoked.copy().pick_types(eeg=False, meg=ch_type) plot_topomap(evoked_.data[:, 0], evoked_.info, **fast_test) # fail with multiple channel types assert_raises(ValueError, plot_topomap, evoked.data[0, :], evoked.info) # Test title def get_texts(p): return [ x.get_text() for x in p.get_children() if isinstance(x, matplotlib.text.Text) ] p = plt_topomap(times, ch_type='eeg', average=0.01) assert_equal(len(get_texts(p)), 0) p = plt_topomap(times, ch_type='eeg', title='Custom') texts = get_texts(p) assert_equal(len(texts), 1) assert_equal(texts[0], 'Custom') plt.close('all') # delaunay triangulation warning with warnings.catch_warnings(record=True): # can't show warnings.simplefilter('always') plt_topomap(times, ch_type='mag', layout=None) assert_raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag', proj='interactive') # projs have already been applied # change to no-proj mode evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0), proj=False) with warnings.catch_warnings(record=True): warnings.simplefilter('always') fig1 = evoked.plot_topomap('interactive', 'mag', proj='interactive', **fast_test) _fake_click(fig1, fig1.axes[1], (0.5, 0.5)) # click slider data_max = np.max(fig1.axes[0].images[0]._A) fig2 = plt.gcf() _fake_click(fig2, fig2.axes[0], (0.075, 0.775)) # toggle projector # make sure projector gets toggled assert_true(np.max(fig1.axes[0].images[0]._A) != data_max) assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(.1, 50)) assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6]) for ch in evoked.info['chs']: if ch['coil_type'] == FIFF.FIFFV_COIL_EEG: ch['loc'].fill(0) # Remove extra digitization point, so EEG digitization points # correspond with the EEG electrodes del evoked.info['dig'][85] pos = make_eeg_layout(evoked.info).pos[:, :2] pos, outlines = _check_outlines(pos, 'head') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.5) pos, outlines = _check_outlines(pos, 'skirt') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(not outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.625) pos, outlines = _check_outlines(pos, 'skirt', head_pos={'scale': [1.2, 1.2]}) assert_array_equal(outlines['clip_radius'], 0.75) # Plot skirt evoked.plot_topomap(times, ch_type='eeg', outlines='skirt', **fast_test) # Pass custom outlines without patch evoked.plot_topomap(times, ch_type='eeg', outlines=outlines, **fast_test) plt.close('all') # Test interactive cmap fig = plot_evoked_topomap(evoked, times=[0., 0.1], ch_type='eeg', cmap=('Reds', True), title='title', **fast_test) fig.canvas.key_press_event('up') fig.canvas.key_press_event(' ') fig.canvas.key_press_event('down') cbar = fig.get_axes()[0].CB # Fake dragging with mouse. ax = cbar.cbar.ax _fake_click(fig, ax, (0.1, 0.1)) _fake_click(fig, ax, (0.1, 0.2), kind='motion') _fake_click(fig, ax, (0.1, 0.3), kind='release') _fake_click(fig, ax, (0.1, 0.1), button=3) _fake_click(fig, ax, (0.1, 0.2), button=3, kind='motion') _fake_click(fig, ax, (0.1, 0.3), kind='release') fig.canvas.scroll_event(0.5, 0.5, -0.5) # scroll down fig.canvas.scroll_event(0.5, 0.5, 0.5) # scroll up plt.close('all') # Pass custom outlines with patch callable def patch(): return Circle((0.5, 0.4687), radius=.46, clip_on=True, transform=plt.gca().transAxes) outlines['patch'] = patch plot_evoked_topomap(evoked, times, ch_type='eeg', outlines=outlines, **fast_test) # Remove digitization points. Now topomap should fail evoked.info['dig'] = None assert_raises(RuntimeError, plot_evoked_topomap, evoked, times, ch_type='eeg') plt.close('all') # Error for missing names n_channels = len(pos) data = np.ones(n_channels) assert_raises(ValueError, plot_topomap, data, pos, show_names=True) # Test error messages for invalid pos parameter pos_1d = np.zeros(n_channels) pos_3d = np.zeros((n_channels, 2, 2)) assert_raises(ValueError, plot_topomap, data, pos_1d) assert_raises(ValueError, plot_topomap, data, pos_3d) assert_raises(ValueError, plot_topomap, data, pos[:3, :]) pos_x = pos[:, :1] pos_xyz = np.c_[pos, np.zeros(n_channels)[:, np.newaxis]] assert_raises(ValueError, plot_topomap, data, pos_x) assert_raises(ValueError, plot_topomap, data, pos_xyz) # An #channels x 4 matrix should work though. In this case (x, y, width, # height) is assumed. pos_xywh = np.c_[pos, np.zeros((n_channels, 2))] plot_topomap(data, pos_xywh) plt.close('all') # Test peak finder axes = [plt.subplot(131), plt.subplot(132)] with warnings.catch_warnings(record=True): # rightmost column evoked.plot_topomap(times='peaks', axes=axes, **fast_test) plt.close('all') evoked.data = np.zeros(evoked.data.shape) evoked.data[50][1] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[1]) evoked.data[80][100] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 100]]) evoked.data[2][95] = 2 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 95]]) assert_array_equal(_find_peaks(evoked, 1), evoked.times[95]) # Test excluding bads channels evoked_grad.info['bads'] += [evoked_grad.info['ch_names'][0]] orig_bads = evoked_grad.info['bads'] evoked_grad.plot_topomap(ch_type='grad', times=[0]) assert_array_equal(evoked_grad.info['bads'], orig_bads) plt.close('all')
def test_plot_topomap(): """Test topomap plotting """ import matplotlib.pyplot as plt from matplotlib.patches import Circle # evoked warnings.simplefilter("always") res = 16 evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0)) # Test animation _, anim = evoked.animate_topomap(ch_type="grad", times=[0, 0.1], butterfly=False) anim._func(1) # _animate has to be tested separately on 'Agg' backend. plt.close("all") ev_bad = evoked.pick_types(meg=False, eeg=True, copy=True) ev_bad.pick_channels(ev_bad.ch_names[:2]) ev_bad.plot_topomap(times=ev_bad.times[:2] - 1e-6) # auto, plots EEG assert_raises(ValueError, ev_bad.plot_topomap, ch_type="mag") assert_raises(TypeError, ev_bad.plot_topomap, head_pos="foo") assert_raises(KeyError, ev_bad.plot_topomap, head_pos=dict(foo="bar")) assert_raises(ValueError, ev_bad.plot_topomap, head_pos=dict(center=0)) assert_raises(ValueError, ev_bad.plot_topomap, times=[-100]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time evoked.plot_topomap(0.1, layout=layout, scale=dict(mag=0.1)) plt.close("all") axes = [plt.subplot(221), plt.subplot(222)] evoked.plot_topomap(axes=axes, colorbar=False) plt.close("all") evoked.plot_topomap(times=[-0.1, 0.2]) plt.close("all") mask = np.zeros_like(evoked.data, dtype=bool) mask[[1, 5], :] = True evoked.plot_topomap(ch_type="mag", outlines=None) times = [0.1] evoked.plot_topomap(times, ch_type="eeg", res=res, scale=1) evoked.plot_topomap(times, ch_type="grad", mask=mask, res=res) evoked.plot_topomap(times, ch_type="planar1", res=res) evoked.plot_topomap(times, ch_type="planar2", res=res) evoked.plot_topomap(times, ch_type="grad", mask=mask, res=res, show_names=True, mask_params={"marker": "x"}) plt.close("all") assert_raises(ValueError, evoked.plot_topomap, times, ch_type="eeg", res=res, average=-1000) assert_raises(ValueError, evoked.plot_topomap, times, ch_type="eeg", res=res, average="hahahahah") p = evoked.plot_topomap( times, ch_type="grad", res=res, show_names=lambda x: x.replace("MEG", ""), image_interp="bilinear" ) subplot = [x for x in p.get_children() if isinstance(x, matplotlib.axes.Subplot)][0] assert_true(all("MEG" not in x.get_text() for x in subplot.get_children() if isinstance(x, matplotlib.text.Text))) # Test title def get_texts(p): return [x.get_text() for x in p.get_children() if isinstance(x, matplotlib.text.Text)] p = evoked.plot_topomap(times, ch_type="eeg", res=res, average=0.01) assert_equal(len(get_texts(p)), 0) p = evoked.plot_topomap(times, ch_type="eeg", title="Custom", res=res) texts = get_texts(p) assert_equal(len(texts), 1) assert_equal(texts[0], "Custom") plt.close("all") # delaunay triangulation warning with warnings.catch_warnings(record=True): # can't show warnings.simplefilter("always") evoked.plot_topomap(times, ch_type="mag", layout=None, res=res) assert_raises( RuntimeError, plot_evoked_topomap, evoked, 0.1, "mag", proj="interactive" ) # projs have already been applied # change to no-proj mode evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0), proj=False) with warnings.catch_warnings(record=True): warnings.simplefilter("always") evoked.plot_topomap(0.1, "mag", proj="interactive", res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(0.1, 50)) assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6]) with warnings.catch_warnings(record=True): # file conventions warnings.simplefilter("always") projs = read_proj(ecg_fname) projs = [pp for pp in projs if pp["desc"].lower().find("eeg") < 0] plot_projs_topomap(projs, res=res) plt.close("all") ax = plt.subplot(111) plot_projs_topomap([projs[0]], res=res, axes=ax) # test axes param plt.close("all") for ch in evoked.info["chs"]: if ch["coil_type"] == FIFF.FIFFV_COIL_EEG: ch["loc"].fill(0) # Remove extra digitization point, so EEG digitization points # correspond with the EEG electrodes del evoked.info["dig"][85] pos = make_eeg_layout(evoked.info).pos[:, :2] pos, outlines = _check_outlines(pos, "head") assert_true("head" in outlines.keys()) assert_true("nose" in outlines.keys()) assert_true("ear_left" in outlines.keys()) assert_true("ear_right" in outlines.keys()) assert_true("autoshrink" in outlines.keys()) assert_true(outlines["autoshrink"]) assert_true("clip_radius" in outlines.keys()) assert_array_equal(outlines["clip_radius"], 0.5) pos, outlines = _check_outlines(pos, "skirt") assert_true("head" in outlines.keys()) assert_true("nose" in outlines.keys()) assert_true("ear_left" in outlines.keys()) assert_true("ear_right" in outlines.keys()) assert_true("autoshrink" in outlines.keys()) assert_true(not outlines["autoshrink"]) assert_true("clip_radius" in outlines.keys()) assert_array_equal(outlines["clip_radius"], 0.625) pos, outlines = _check_outlines(pos, "skirt", head_pos={"scale": [1.2, 1.2]}) assert_array_equal(outlines["clip_radius"], 0.75) # Plot skirt evoked.plot_topomap(times, ch_type="eeg", outlines="skirt") # Pass custom outlines without patch evoked.plot_topomap(times, ch_type="eeg", outlines=outlines) plt.close("all") # Pass custom outlines with patch callable def patch(): return Circle((0.5, 0.4687), radius=0.46, clip_on=True, transform=plt.gca().transAxes) outlines["patch"] = patch plot_evoked_topomap(evoked, times, ch_type="eeg", outlines=outlines) # Remove digitization points. Now topomap should fail evoked.info["dig"] = None assert_raises(RuntimeError, plot_evoked_topomap, evoked, times, ch_type="eeg") plt.close("all") # Error for missing names n_channels = len(pos) data = np.ones(n_channels) assert_raises(ValueError, plot_topomap, data, pos, show_names=True) # Test error messages for invalid pos parameter pos_1d = np.zeros(n_channels) pos_3d = np.zeros((n_channels, 2, 2)) assert_raises(ValueError, plot_topomap, data, pos_1d) assert_raises(ValueError, plot_topomap, data, pos_3d) assert_raises(ValueError, plot_topomap, data, pos[:3, :]) pos_x = pos[:, :1] pos_xyz = np.c_[pos, np.zeros(n_channels)[:, np.newaxis]] assert_raises(ValueError, plot_topomap, data, pos_x) assert_raises(ValueError, plot_topomap, data, pos_xyz) # An #channels x 4 matrix should work though. In this case (x, y, width, # height) is assumed. pos_xywh = np.c_[pos, np.zeros((n_channels, 2))] plot_topomap(data, pos_xywh) plt.close("all") # Test peak finder axes = [plt.subplot(131), plt.subplot(132)] with warnings.catch_warnings(record=True): # rightmost column evoked.plot_topomap(times="peaks", axes=axes) plt.close("all") evoked.data = np.zeros(evoked.data.shape) evoked.data[50][1] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[1]) evoked.data[80][100] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 100]]) evoked.data[2][95] = 2 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 95]]) assert_array_equal(_find_peaks(evoked, 1), evoked.times[95])
def test_plot_topomap(): """Test topomap plotting """ import matplotlib.pyplot as plt from matplotlib.patches import Circle # evoked warnings.simplefilter('always') res = 16 evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0)) ev_bad = evoked.pick_types(meg=False, eeg=True, copy=True) ev_bad.pick_channels(ev_bad.ch_names[:2]) ev_bad.plot_topomap(times=ev_bad.times[:2] - 1e-6) # auto, should plot EEG assert_raises(ValueError, ev_bad.plot_topomap, ch_type='mag') assert_raises(TypeError, ev_bad.plot_topomap, head_pos='foo') assert_raises(KeyError, ev_bad.plot_topomap, head_pos=dict(foo='bar')) assert_raises(ValueError, ev_bad.plot_topomap, head_pos=dict(center=0)) assert_raises(ValueError, ev_bad.plot_topomap, times=[-100]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time evoked.plot_topomap(0.1, layout=layout, scale=dict(mag=0.1)) plt.close('all') mask = np.zeros_like(evoked.data, dtype=bool) mask[[1, 5], :] = True evoked.plot_topomap(None, ch_type='mag', outlines=None) times = [0.1] evoked.plot_topomap(times, ch_type='eeg', res=res, scale=1) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res) evoked.plot_topomap(times, ch_type='planar1', res=res) evoked.plot_topomap(times, ch_type='planar2', res=res) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res, show_names=True, mask_params={'marker': 'x'}) plt.close('all') assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average=-1000) assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average='hahahahah') p = evoked.plot_topomap(times, ch_type='grad', res=res, show_names=lambda x: x.replace('MEG', ''), image_interp='bilinear') subplot = [x for x in p.get_children() if isinstance(x, matplotlib.axes.Subplot)][0] assert_true(all('MEG' not in x.get_text() for x in subplot.get_children() if isinstance(x, matplotlib.text.Text))) # Test title def get_texts(p): return [x.get_text() for x in p.get_children() if isinstance(x, matplotlib.text.Text)] p = evoked.plot_topomap(times, ch_type='eeg', res=res, average=0.01) assert_equal(len(get_texts(p)), 0) p = evoked.plot_topomap(times, ch_type='eeg', title='Custom', res=res) texts = get_texts(p) assert_equal(len(texts), 1) assert_equal(texts[0], 'Custom') plt.close('all') # delaunay triangulation warning with warnings.catch_warnings(record=True): # can't show warnings.simplefilter('always') evoked.plot_topomap(times, ch_type='mag', layout=None, res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag', proj='interactive') # projs have already been applied # change to no-proj mode evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0), proj=False) with warnings.catch_warnings(record=True): warnings.simplefilter('always') evoked.plot_topomap(0.1, 'mag', proj='interactive', res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(.1, 50)) assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6]) with warnings.catch_warnings(record=True): # file conventions warnings.simplefilter('always') projs = read_proj(ecg_fname) projs = [pp for pp in projs if pp['desc'].lower().find('eeg') < 0] plot_projs_topomap(projs, res=res) plt.close('all') for ch in evoked.info['chs']: if ch['coil_type'] == FIFF.FIFFV_COIL_EEG: if ch['eeg_loc'] is not None: ch['eeg_loc'].fill(0) ch['loc'].fill(0) # Remove extra digitization point, so EEG digitization points # correspond with the EEG electrodes del evoked.info['dig'][85] pos = make_eeg_layout(evoked.info).pos pos, outlines = _check_outlines(pos, 'head') # test 1: pass custom outlines without patch def patch(): return Circle((0.5, 0.4687), radius=.46, clip_on=True, transform=plt.gca().transAxes) # test 2: pass custom outlines with patch callable outlines['patch'] = patch plot_evoked_topomap(evoked, times, ch_type='eeg', outlines='head') # Remove digitization points. Now topomap should fail evoked.info['dig'] = None assert_raises(RuntimeError, plot_evoked_topomap, evoked, times, ch_type='eeg') plt.close('all')
def test_plot_topomap(): """Test topomap plotting.""" import matplotlib.pyplot as plt from matplotlib.patches import Circle # evoked res = 8 fast_test = dict(res=res, contours=0, sensors=False, time_unit='s') fast_test_noscale = dict(res=res, contours=0, sensors=False) evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0)) # Test animation _, anim = evoked.animate_topomap(ch_type='grad', times=[0, 0.1], butterfly=False, time_unit='s') anim._func(1) # _animate has to be tested separately on 'Agg' backend. plt.close('all') ev_bad = evoked.copy().pick_types(meg=False, eeg=True) ev_bad.pick_channels(ev_bad.ch_names[:2]) plt_topomap = partial(ev_bad.plot_topomap, **fast_test) plt_topomap(times=ev_bad.times[:2] - 1e-6) # auto, plots EEG pytest.raises(ValueError, plt_topomap, ch_type='mag') pytest.raises(TypeError, plt_topomap, head_pos='foo') pytest.raises(KeyError, plt_topomap, head_pos=dict(foo='bar')) pytest.raises(ValueError, plt_topomap, head_pos=dict(center=0)) pytest.raises(ValueError, plt_topomap, times=[-100]) # bad time pytest.raises(ValueError, plt_topomap, times=[[0]]) # bad time evoked.plot_topomap([0.1], ch_type='eeg', scalings=1, res=res, contours=[-100, 0, 100], time_unit='ms') plt_topomap = partial(evoked.plot_topomap, **fast_test) plt_topomap(0.1, layout=layout, scalings=dict(mag=0.1)) plt.close('all') axes = [plt.subplot(221), plt.subplot(222)] plt_topomap(axes=axes, colorbar=False) plt.close('all') plt_topomap(times=[-0.1, 0.2]) plt.close('all') evoked_grad = evoked.copy().crop(0, 0).pick_types(meg='grad') mask = np.zeros((204, 1), bool) mask[[0, 3, 5, 6]] = True names = [] def proc_names(x): names.append(x) return x[4:] evoked_grad.plot_topomap(ch_type='grad', times=[0], mask=mask, show_names=proc_names, **fast_test) assert_equal(sorted(names), ['MEG 011x', 'MEG 012x', 'MEG 013x', 'MEG 014x']) mask = np.zeros_like(evoked.data, dtype=bool) mask[[1, 5], :] = True plt_topomap(ch_type='mag', outlines=None) times = [0.1] plt_topomap(times, ch_type='grad', mask=mask) plt_topomap(times, ch_type='planar1') plt_topomap(times, ch_type='planar2') plt_topomap(times, ch_type='grad', mask=mask, show_names=True, mask_params={'marker': 'x'}) plt.close('all') pytest.raises(ValueError, plt_topomap, times, ch_type='eeg', average=-1e3) pytest.raises(ValueError, plt_topomap, times, ch_type='eeg', average='x') p = plt_topomap(times, ch_type='grad', image_interp='bilinear', show_names=lambda x: x.replace('MEG', '')) subplot = [x for x in p.get_children() if 'Subplot' in str(type(x))] assert len(subplot) >= 1, [type(x) for x in p.get_children()] subplot = subplot[0] assert (all('MEG' not in x.get_text() for x in subplot.get_children() if isinstance(x, matplotlib.text.Text))) # Plot array for ch_type in ('mag', 'grad'): evoked_ = evoked.copy().pick_types(eeg=False, meg=ch_type) plot_topomap(evoked_.data[:, 0], evoked_.info, **fast_test_noscale) # fail with multiple channel types pytest.raises(ValueError, plot_topomap, evoked.data[0, :], evoked.info) # Test title def get_texts(p): return [x.get_text() for x in p.get_children() if isinstance(x, matplotlib.text.Text)] p = plt_topomap(times, ch_type='eeg', average=0.01) assert_equal(len(get_texts(p)), 0) p = plt_topomap(times, ch_type='eeg', title='Custom') texts = get_texts(p) assert_equal(len(texts), 1) assert_equal(texts[0], 'Custom') plt.close('all') # delaunay triangulation warning plt_topomap(times, ch_type='mag', layout=None) # projs have already been applied pytest.raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag', proj='interactive', time_unit='s') # change to no-proj mode evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0), proj=False) fig1 = evoked.plot_topomap('interactive', 'mag', proj='interactive', **fast_test) _fake_click(fig1, fig1.axes[1], (0.5, 0.5)) # click slider data_max = np.max(fig1.axes[0].images[0]._A) fig2 = plt.gcf() _fake_click(fig2, fig2.axes[0], (0.075, 0.775)) # toggle projector # make sure projector gets toggled assert (np.max(fig1.axes[0].images[0]._A) != data_max) pytest.raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(.1, 50), time_unit='s') pytest.raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6], time_unit='s') for ch in evoked.info['chs']: if ch['coil_type'] == FIFF.FIFFV_COIL_EEG: ch['loc'].fill(0) # Remove extra digitization point, so EEG digitization points # correspond with the EEG electrodes del evoked.info['dig'][85] pos = make_eeg_layout(evoked.info).pos[:, :2] pos, outlines = _check_outlines(pos, 'head') assert ('head' in outlines.keys()) assert ('nose' in outlines.keys()) assert ('ear_left' in outlines.keys()) assert ('ear_right' in outlines.keys()) assert ('autoshrink' in outlines.keys()) assert (outlines['autoshrink']) assert ('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.5) pos, outlines = _check_outlines(pos, 'skirt') assert ('head' in outlines.keys()) assert ('nose' in outlines.keys()) assert ('ear_left' in outlines.keys()) assert ('ear_right' in outlines.keys()) assert ('autoshrink' in outlines.keys()) assert (not outlines['autoshrink']) assert ('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.625) pos, outlines = _check_outlines(pos, 'skirt', head_pos={'scale': [1.2, 1.2]}) assert_array_equal(outlines['clip_radius'], 0.75) # Plot skirt evoked.plot_topomap(times, ch_type='eeg', outlines='skirt', **fast_test) # Pass custom outlines without patch evoked.plot_topomap(times, ch_type='eeg', outlines=outlines, **fast_test) plt.close('all') # Test interactive cmap fig = plot_evoked_topomap(evoked, times=[0., 0.1], ch_type='eeg', cmap=('Reds', True), title='title', **fast_test) fig.canvas.key_press_event('up') fig.canvas.key_press_event(' ') fig.canvas.key_press_event('down') cbar = fig.get_axes()[0].CB # Fake dragging with mouse. ax = cbar.cbar.ax _fake_click(fig, ax, (0.1, 0.1)) _fake_click(fig, ax, (0.1, 0.2), kind='motion') _fake_click(fig, ax, (0.1, 0.3), kind='release') _fake_click(fig, ax, (0.1, 0.1), button=3) _fake_click(fig, ax, (0.1, 0.2), button=3, kind='motion') _fake_click(fig, ax, (0.1, 0.3), kind='release') fig.canvas.scroll_event(0.5, 0.5, -0.5) # scroll down fig.canvas.scroll_event(0.5, 0.5, 0.5) # scroll up plt.close('all') # Pass custom outlines with patch callable def patch(): return Circle((0.5, 0.4687), radius=.46, clip_on=True, transform=plt.gca().transAxes) outlines['patch'] = patch plot_evoked_topomap(evoked, times, ch_type='eeg', outlines=outlines, **fast_test) # Remove digitization points. Now topomap should fail evoked.info['dig'] = None pytest.raises(RuntimeError, plot_evoked_topomap, evoked, times, ch_type='eeg', time_unit='s') plt.close('all') # Error for missing names n_channels = len(pos) data = np.ones(n_channels) pytest.raises(ValueError, plot_topomap, data, pos, show_names=True) # Test error messages for invalid pos parameter pos_1d = np.zeros(n_channels) pos_3d = np.zeros((n_channels, 2, 2)) pytest.raises(ValueError, plot_topomap, data, pos_1d) pytest.raises(ValueError, plot_topomap, data, pos_3d) pytest.raises(ValueError, plot_topomap, data, pos[:3, :]) pos_x = pos[:, :1] pos_xyz = np.c_[pos, np.zeros(n_channels)[:, np.newaxis]] pytest.raises(ValueError, plot_topomap, data, pos_x) pytest.raises(ValueError, plot_topomap, data, pos_xyz) # An #channels x 4 matrix should work though. In this case (x, y, width, # height) is assumed. pos_xywh = np.c_[pos, np.zeros((n_channels, 2))] plot_topomap(data, pos_xywh) plt.close('all') # Test peak finder axes = [plt.subplot(131), plt.subplot(132)] evoked.plot_topomap(times='peaks', axes=axes, **fast_test) plt.close('all') evoked.data = np.zeros(evoked.data.shape) evoked.data[50][1] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[1]) evoked.data[80][100] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 100]]) evoked.data[2][95] = 2 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 95]]) assert_array_equal(_find_peaks(evoked, 1), evoked.times[95]) # Test excluding bads channels evoked_grad.info['bads'] += [evoked_grad.info['ch_names'][0]] orig_bads = evoked_grad.info['bads'] evoked_grad.plot_topomap(ch_type='grad', times=[0], time_unit='ms') assert_array_equal(evoked_grad.info['bads'], orig_bads) plt.close('all')
from udgan.io import convert_mat_structure data_path = 'data/2010-02-16_0009' # Events management raw, events, event_id = convert_mat_structure(data_path) mne.viz.plot_events(events=events, event_id=event_id, sfreq=raw.info['sfreq']) event_id = {'Boop': 1, 'Beep': 2, 'Motor response': 6} # Check raw signals raw.plot() # Generate topographic layout from mne.channels import make_eeg_layout layout = make_eeg_layout(raw.info, exclude=['MOh','MOb']) # Generate evoked potentials tmin, tmax = -0.2, 0.5 include = [] picks = mne.pick_types(raw.info, meg=True, eeg=True, stim=False, eog=True, include=include, exclude='bads') epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs.plot(trellis=False, title='Auditory odd ball') # Visualization of neural repsonses for differ import matplotlib.pyplot as plt from mne.viz import plot_topomap import numpy as np res=16
def test_plot_topomap(): """Test topomap plotting """ import matplotlib.pyplot as plt from matplotlib.patches import Circle # evoked warnings.simplefilter('always') res = 16 evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0)) # Test animation _, anim = evoked.animate_topomap(ch_type='grad', times=[0, 0.1], butterfly=False) anim._func(1) # _animate has to be tested separately on 'Agg' backend. plt.close('all') ev_bad = evoked.copy().pick_types(meg=False, eeg=True) ev_bad.pick_channels(ev_bad.ch_names[:2]) ev_bad.plot_topomap(times=ev_bad.times[:2] - 1e-6) # auto, plots EEG assert_raises(ValueError, ev_bad.plot_topomap, ch_type='mag') assert_raises(TypeError, ev_bad.plot_topomap, head_pos='foo') assert_raises(KeyError, ev_bad.plot_topomap, head_pos=dict(foo='bar')) assert_raises(ValueError, ev_bad.plot_topomap, head_pos=dict(center=0)) assert_raises(ValueError, ev_bad.plot_topomap, times=[-100]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time evoked.plot_topomap(0.1, layout=layout, scale=dict(mag=0.1)) plt.close('all') axes = [plt.subplot(221), plt.subplot(222)] evoked.plot_topomap(axes=axes, colorbar=False) plt.close('all') evoked.plot_topomap(times=[-0.1, 0.2]) plt.close('all') mask = np.zeros_like(evoked.data, dtype=bool) mask[[1, 5], :] = True evoked.plot_topomap(ch_type='mag', outlines=None) times = [0.1] evoked.plot_topomap(times, ch_type='eeg', res=res, scale=1) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res) evoked.plot_topomap(times, ch_type='planar1', res=res) evoked.plot_topomap(times, ch_type='planar2', res=res) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res, show_names=True, mask_params={'marker': 'x'}) plt.close('all') assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average=-1000) assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average='hahahahah') p = evoked.plot_topomap(times, ch_type='grad', res=res, show_names=lambda x: x.replace('MEG', ''), image_interp='bilinear') subplot = [ x for x in p.get_children() if isinstance(x, matplotlib.axes.Subplot) ][0] assert_true( all('MEG' not in x.get_text() for x in subplot.get_children() if isinstance(x, matplotlib.text.Text))) # Plot array for ch_type in ('mag', 'grad'): evoked_ = evoked.copy().pick_types(eeg=False, meg=ch_type) plot_topomap(evoked_.data[:, 0], evoked_.info) # fail with multiple channel types assert_raises(ValueError, plot_topomap, evoked.data[0, :], evoked.info) # Test title def get_texts(p): return [ x.get_text() for x in p.get_children() if isinstance(x, matplotlib.text.Text) ] p = evoked.plot_topomap(times, ch_type='eeg', res=res, average=0.01) assert_equal(len(get_texts(p)), 0) p = evoked.plot_topomap(times, ch_type='eeg', title='Custom', res=res) texts = get_texts(p) assert_equal(len(texts), 1) assert_equal(texts[0], 'Custom') plt.close('all') # delaunay triangulation warning with warnings.catch_warnings(record=True): # can't show warnings.simplefilter('always') evoked.plot_topomap(times, ch_type='mag', layout=None, res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag', proj='interactive') # projs have already been applied # change to no-proj mode evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0), proj=False) with warnings.catch_warnings(record=True): warnings.simplefilter('always') evoked.plot_topomap(0.1, 'mag', proj='interactive', res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(.1, 50)) assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6]) with warnings.catch_warnings(record=True): # file conventions warnings.simplefilter('always') projs = read_proj(ecg_fname) projs = [pp for pp in projs if pp['desc'].lower().find('eeg') < 0] plot_projs_topomap(projs, res=res) plt.close('all') ax = plt.subplot(111) plot_projs_topomap([projs[0]], res=res, axes=ax) # test axes param plt.close('all') for ch in evoked.info['chs']: if ch['coil_type'] == FIFF.FIFFV_COIL_EEG: ch['loc'].fill(0) # Remove extra digitization point, so EEG digitization points # correspond with the EEG electrodes del evoked.info['dig'][85] pos = make_eeg_layout(evoked.info).pos[:, :2] pos, outlines = _check_outlines(pos, 'head') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.5) pos, outlines = _check_outlines(pos, 'skirt') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(not outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.625) pos, outlines = _check_outlines(pos, 'skirt', head_pos={'scale': [1.2, 1.2]}) assert_array_equal(outlines['clip_radius'], 0.75) # Plot skirt evoked.plot_topomap(times, ch_type='eeg', outlines='skirt') # Pass custom outlines without patch evoked.plot_topomap(times, ch_type='eeg', outlines=outlines) plt.close('all') # Pass custom outlines with patch callable def patch(): return Circle((0.5, 0.4687), radius=.46, clip_on=True, transform=plt.gca().transAxes) outlines['patch'] = patch plot_evoked_topomap(evoked, times, ch_type='eeg', outlines=outlines) # Remove digitization points. Now topomap should fail evoked.info['dig'] = None assert_raises(RuntimeError, plot_evoked_topomap, evoked, times, ch_type='eeg') plt.close('all') # Error for missing names n_channels = len(pos) data = np.ones(n_channels) assert_raises(ValueError, plot_topomap, data, pos, show_names=True) # Test error messages for invalid pos parameter pos_1d = np.zeros(n_channels) pos_3d = np.zeros((n_channels, 2, 2)) assert_raises(ValueError, plot_topomap, data, pos_1d) assert_raises(ValueError, plot_topomap, data, pos_3d) assert_raises(ValueError, plot_topomap, data, pos[:3, :]) pos_x = pos[:, :1] pos_xyz = np.c_[pos, np.zeros(n_channels)[:, np.newaxis]] assert_raises(ValueError, plot_topomap, data, pos_x) assert_raises(ValueError, plot_topomap, data, pos_xyz) # An #channels x 4 matrix should work though. In this case (x, y, width, # height) is assumed. pos_xywh = np.c_[pos, np.zeros((n_channels, 2))] plot_topomap(data, pos_xywh) plt.close('all') # Test peak finder axes = [plt.subplot(131), plt.subplot(132)] with warnings.catch_warnings(record=True): # rightmost column evoked.plot_topomap(times='peaks', axes=axes) plt.close('all') evoked.data = np.zeros(evoked.data.shape) evoked.data[50][1] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[1]) evoked.data[80][100] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 100]]) evoked.data[2][95] = 2 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 95]]) assert_array_equal(_find_peaks(evoked, 1), evoked.times[95])
def test_plot_topomap(): """Test topomap plotting """ import matplotlib.pyplot as plt from matplotlib.patches import Circle # evoked warnings.simplefilter('always') res = 16 evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0)) ev_bad = evoked.pick_types(meg=False, eeg=True, copy=True) ev_bad.pick_channels(ev_bad.ch_names[:2]) ev_bad.plot_topomap(times=ev_bad.times[:2] - 1e-6) # auto, should plot EEG assert_raises(ValueError, ev_bad.plot_topomap, ch_type='mag') assert_raises(TypeError, ev_bad.plot_topomap, head_pos='foo') assert_raises(KeyError, ev_bad.plot_topomap, head_pos=dict(foo='bar')) assert_raises(ValueError, ev_bad.plot_topomap, head_pos=dict(center=0)) assert_raises(ValueError, ev_bad.plot_topomap, times=[-100]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time evoked.plot_topomap(0.1, layout=layout, scale=dict(mag=0.1)) plt.close('all') axes = [plt.subplot(221), plt.subplot(222)] evoked.plot_topomap(axes=axes, colorbar=False) plt.close('all') evoked.plot_topomap(times=[-0.1, 0.2]) plt.close('all') mask = np.zeros_like(evoked.data, dtype=bool) mask[[1, 5], :] = True evoked.plot_topomap(ch_type='mag', outlines=None) times = [0.1] evoked.plot_topomap(times, ch_type='eeg', res=res, scale=1) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res) evoked.plot_topomap(times, ch_type='planar1', res=res) evoked.plot_topomap(times, ch_type='planar2', res=res) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res, show_names=True, mask_params={'marker': 'x'}) plt.close('all') assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average=-1000) assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average='hahahahah') p = evoked.plot_topomap(times, ch_type='grad', res=res, show_names=lambda x: x.replace('MEG', ''), image_interp='bilinear') subplot = [x for x in p.get_children() if isinstance(x, matplotlib.axes.Subplot)][0] assert_true(all('MEG' not in x.get_text() for x in subplot.get_children() if isinstance(x, matplotlib.text.Text))) # Test title def get_texts(p): return [x.get_text() for x in p.get_children() if isinstance(x, matplotlib.text.Text)] p = evoked.plot_topomap(times, ch_type='eeg', res=res, average=0.01) assert_equal(len(get_texts(p)), 0) p = evoked.plot_topomap(times, ch_type='eeg', title='Custom', res=res) texts = get_texts(p) assert_equal(len(texts), 1) assert_equal(texts[0], 'Custom') plt.close('all') # delaunay triangulation warning with warnings.catch_warnings(record=True): # can't show warnings.simplefilter('always') evoked.plot_topomap(times, ch_type='mag', layout=None, res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag', proj='interactive') # projs have already been applied # change to no-proj mode evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0), proj=False) with warnings.catch_warnings(record=True): warnings.simplefilter('always') evoked.plot_topomap(0.1, 'mag', proj='interactive', res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(.1, 50)) assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6]) with warnings.catch_warnings(record=True): # file conventions warnings.simplefilter('always') projs = read_proj(ecg_fname) projs = [pp for pp in projs if pp['desc'].lower().find('eeg') < 0] plot_projs_topomap(projs, res=res) plt.close('all') ax = plt.subplot(111) plot_projs_topomap([projs[0]], res=res, axes=ax) # test axes param plt.close('all') for ch in evoked.info['chs']: if ch['coil_type'] == FIFF.FIFFV_COIL_EEG: ch['loc'].fill(0) # Remove extra digitization point, so EEG digitization points # correspond with the EEG electrodes del evoked.info['dig'][85] pos = make_eeg_layout(evoked.info).pos[:, :2] pos, outlines = _check_outlines(pos, 'head') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.5) pos, outlines = _check_outlines(pos, 'skirt') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(not outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.625) pos, outlines = _check_outlines(pos, 'skirt', head_pos={'scale': [1.2, 1.2]}) assert_array_equal(outlines['clip_radius'], 0.75) # Plot skirt evoked.plot_topomap(times, ch_type='eeg', outlines='skirt') # Pass custom outlines without patch evoked.plot_topomap(times, ch_type='eeg', outlines=outlines) plt.close('all') # Pass custom outlines with patch callable def patch(): return Circle((0.5, 0.4687), radius=.46, clip_on=True, transform=plt.gca().transAxes) outlines['patch'] = patch plot_evoked_topomap(evoked, times, ch_type='eeg', outlines=outlines) # Remove digitization points. Now topomap should fail evoked.info['dig'] = None assert_raises(RuntimeError, plot_evoked_topomap, evoked, times, ch_type='eeg') plt.close('all') # Error for missing names n_channels = len(pos) data = np.ones(n_channels) assert_raises(ValueError, plot_topomap, data, pos, show_names=True) # Test error messages for invalid pos parameter pos_1d = np.zeros(n_channels) pos_3d = np.zeros((n_channels, 2, 2)) assert_raises(ValueError, plot_topomap, data, pos_1d) assert_raises(ValueError, plot_topomap, data, pos_3d) assert_raises(ValueError, plot_topomap, data, pos[:3, :]) pos_x = pos[:, :1] pos_xyz = np.c_[pos, np.zeros(n_channels)[:, np.newaxis]] assert_raises(ValueError, plot_topomap, data, pos_x) assert_raises(ValueError, plot_topomap, data, pos_xyz) # An #channels x 4 matrix should work though. In this case (x, y, width, # height) is assumed. pos_xywh = np.c_[pos, np.zeros((n_channels, 2))] plot_topomap(data, pos_xywh) plt.close('all') # Test peak finder axes = [plt.subplot(131), plt.subplot(132)] evoked.plot_topomap(times='peaks', axes=axes) plt.close('all') evoked.data = np.zeros(evoked.data.shape) evoked.data[50][1] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[1]) evoked.data[80][100] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 100]]) evoked.data[2][95] = 2 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 95]]) assert_array_equal(_find_peaks(evoked, 1), evoked.times[95])
def test_plot_topomap(): """Test topomap plotting """ import matplotlib.pyplot as plt from matplotlib.patches import Circle # evoked warnings.simplefilter('always') res = 16 evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0)) ev_bad = evoked.pick_types(meg=False, eeg=True, copy=True) ev_bad.pick_channels(ev_bad.ch_names[:2]) ev_bad.plot_topomap(times=ev_bad.times[:2] - 1e-6) # auto, should plot EEG assert_raises(ValueError, ev_bad.plot_topomap, ch_type='mag') assert_raises(TypeError, ev_bad.plot_topomap, head_pos='foo') assert_raises(KeyError, ev_bad.plot_topomap, head_pos=dict(foo='bar')) assert_raises(ValueError, ev_bad.plot_topomap, head_pos=dict(center=0)) assert_raises(ValueError, ev_bad.plot_topomap, times=[-100]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time evoked.plot_topomap(0.1, layout=layout, scale=dict(mag=0.1)) plt.close('all') axes = [plt.subplot(221), plt.subplot(222)] evoked.plot_topomap(axes=axes, colorbar=False) plt.close('all') evoked.plot_topomap(times=[-0.1, 0.2]) plt.close('all') mask = np.zeros_like(evoked.data, dtype=bool) mask[[1, 5], :] = True evoked.plot_topomap(None, ch_type='mag', outlines=None) times = [0.1] evoked.plot_topomap(times, ch_type='eeg', res=res, scale=1) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res) evoked.plot_topomap(times, ch_type='planar1', res=res) evoked.plot_topomap(times, ch_type='planar2', res=res) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res, show_names=True, mask_params={'marker': 'x'}) plt.close('all') assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average=-1000) assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average='hahahahah') p = evoked.plot_topomap(times, ch_type='grad', res=res, show_names=lambda x: x.replace('MEG', ''), image_interp='bilinear') subplot = [x for x in p.get_children() if isinstance(x, matplotlib.axes.Subplot)][0] assert_true(all('MEG' not in x.get_text() for x in subplot.get_children() if isinstance(x, matplotlib.text.Text))) # Test title def get_texts(p): return [x.get_text() for x in p.get_children() if isinstance(x, matplotlib.text.Text)] p = evoked.plot_topomap(times, ch_type='eeg', res=res, average=0.01) assert_equal(len(get_texts(p)), 0) p = evoked.plot_topomap(times, ch_type='eeg', title='Custom', res=res) texts = get_texts(p) assert_equal(len(texts), 1) assert_equal(texts[0], 'Custom') plt.close('all') # delaunay triangulation warning with warnings.catch_warnings(record=True): # can't show warnings.simplefilter('always') evoked.plot_topomap(times, ch_type='mag', layout=None, res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag', proj='interactive') # projs have already been applied # change to no-proj mode evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0), proj=False) with warnings.catch_warnings(record=True): warnings.simplefilter('always') evoked.plot_topomap(0.1, 'mag', proj='interactive', res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(.1, 50)) assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6]) with warnings.catch_warnings(record=True): # file conventions warnings.simplefilter('always') projs = read_proj(ecg_fname) projs = [pp for pp in projs if pp['desc'].lower().find('eeg') < 0] plot_projs_topomap(projs, res=res) plt.close('all') ax = plt.subplot(111) plot_projs_topomap([projs[0]], res=res, axes=ax) # test axes param plt.close('all') for ch in evoked.info['chs']: if ch['coil_type'] == FIFF.FIFFV_COIL_EEG: if ch['eeg_loc'] is not None: ch['eeg_loc'].fill(0) ch['loc'].fill(0) # Remove extra digitization point, so EEG digitization points # correspond with the EEG electrodes del evoked.info['dig'][85] pos = make_eeg_layout(evoked.info).pos pos, outlines = _check_outlines(pos, 'head') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.5) pos, outlines = _check_outlines(pos, 'skirt') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(not outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.625) pos, outlines = _check_outlines(pos, 'skirt', head_pos={'scale': [1.2, 1.2]}) assert_array_equal(outlines['clip_radius'], 0.75) # Plot skirt evoked.plot_topomap(times, ch_type='eeg', outlines='skirt') # Pass custom outlines without patch evoked.plot_topomap(times, ch_type='eeg', outlines=outlines) plt.close('all') # Pass custom outlines with patch callable def patch(): return Circle((0.5, 0.4687), radius=.46, clip_on=True, transform=plt.gca().transAxes) outlines['patch'] = patch plot_evoked_topomap(evoked, times, ch_type='eeg', outlines=outlines) # Remove digitization points. Now topomap should fail evoked.info['dig'] = None assert_raises(RuntimeError, plot_evoked_topomap, evoked, times, ch_type='eeg') plt.close('all')