def test_auto_scale(): """Test auto-scaling of channels for quick plotting.""" raw = read_raw_fif(raw_fname) epochs = Epochs(raw, read_events(ev_fname)) rand_data = np.random.randn(10, 100) for inst in [raw, epochs]: scale_grad = 1e10 scalings_def = dict([('eeg', 'auto'), ('grad', scale_grad), ('stim', 'auto')]) # Test for wrong inputs pytest.raises(ValueError, inst.plot, scalings='foo') pytest.raises(ValueError, _compute_scalings, 'foo', inst) # Make sure compute_scalings doesn't change anything not auto scalings_new = _compute_scalings(scalings_def, inst) assert (scale_grad == scalings_new['grad']) assert (scalings_new['eeg'] != 'auto') pytest.raises(ValueError, _compute_scalings, scalings_def, rand_data) epochs = epochs[0].load_data() epochs.pick_types(eeg=True, meg=False) pytest.raises(ValueError, _compute_scalings, dict(grad='auto'), epochs)
def test_auto_scale(): """Test auto-scaling of channels for quick plotting.""" raw = read_raw_fif(raw_fname, preload=False, add_eeg_ref=False) ev = read_events(ev_fname) epochs = Epochs(raw, ev, add_eeg_ref=False) rand_data = np.random.randn(10, 100) for inst in [raw, epochs]: scale_grad = 1e10 scalings_def = dict([('eeg', 'auto'), ('grad', scale_grad), ('stim', 'auto')]) # Test for wrong inputs assert_raises(ValueError, inst.plot, scalings='foo') assert_raises(ValueError, _compute_scalings, 'foo', inst) # Make sure compute_scalings doesn't change anything not auto scalings_new = _compute_scalings(scalings_def, inst) assert_true(scale_grad == scalings_new['grad']) assert_true(scalings_new['eeg'] != 'auto') assert_raises(ValueError, _compute_scalings, scalings_def, rand_data) epochs = epochs[0].load_data() epochs.pick_types(eeg=True, meg=False) assert_raises(ValueError, _compute_scalings, dict(grad='auto'), epochs)
def test_auto_scale(): """Test auto-scaling of channels for quick plotting.""" raw = read_raw_fif(raw_fname) epochs = Epochs(raw, read_events(ev_fname)) rand_data = np.random.randn(10, 100) for inst in [raw, epochs]: scale_grad = 1e10 scalings_def = dict([('eeg', 'auto'), ('grad', scale_grad), ('stim', 'auto')]) # Test for wrong inputs with pytest.raises(ValueError, match=r".*scalings.*'foo'.*"): inst.plot(scalings='foo') # Make sure compute_scalings doesn't change anything not auto scalings_new = _compute_scalings(scalings_def, inst) assert (scale_grad == scalings_new['grad']) assert (scalings_new['eeg'] != 'auto') with pytest.raises(ValueError, match='Must supply either Raw or Epochs'): _compute_scalings(scalings_def, rand_data) epochs = epochs[0].load_data() epochs.pick_types(eeg=True, meg=False)
def test_auto_scale(): """Test auto-scaling of channels for quick plotting.""" raw = read_raw_fif(raw_fname, preload=False) ev = read_events(ev_fname) epochs = Epochs(raw, ev) rand_data = np.random.randn(10, 100) for inst in [raw, epochs]: scale_grad = 1e10 scalings_def = dict([("eeg", "auto"), ("grad", scale_grad), ("stim", "auto")]) # Test for wrong inputs assert_raises(ValueError, inst.plot, scalings="foo") assert_raises(ValueError, _compute_scalings, "foo", inst) # Make sure compute_scalings doesn't change anything not auto scalings_new = _compute_scalings(scalings_def, inst) assert_true(scale_grad == scalings_new["grad"]) assert_true(scalings_new["eeg"] != "auto") assert_raises(ValueError, _compute_scalings, scalings_def, rand_data) epochs = epochs[0].load_data() epochs.pick_types(eeg=True, meg=False) assert_raises(ValueError, _compute_scalings, dict(grad="auto"), epochs)