def test_plot_ica_sources(): """Test plotting of ICA panel.""" raw = read_raw_fif(raw_fname).crop(0, 1).load_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) ica.exclude = [1] fig = ica.plot_sources(raw) fig.canvas.key_press_event('escape') # Sadly close_event isn't called on Agg backend and the test always passes. assert_array_equal(ica.exclude, [1]) plt.close('all') # dtype can change int->np.int after load, test it explicitly ica.n_components_ = np.int64(ica.n_components_) fig = ica.plot_sources(raw) # also test mouse clicks data_ax = fig.axes[0] assert len(plt.get_fignums()) == 1 _fake_click(fig, data_ax, [-0.1, 0.9]) # click on y-label assert len(plt.get_fignums()) == 2 ica.exclude = [1] ica.plot_sources(raw) raw.info['bads'] = ['MEG 0113'] with pytest.raises(RuntimeError, match="Raw doesn't match fitted data"): ica.plot_sources(inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] with pytest.raises(RuntimeError, match="Epochs don't match fitted data"): ica.plot_sources(inst=epochs) epochs.info['bads'] = [] ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.exclude = [0] ica.plot_sources(evoked) ica.labels_ = dict(eog=[0]) ica.labels_['eog/0/crazy-channel'] = [0] ica.plot_sources(evoked) # now with labels with pytest.raises(ValueError, match='must be of Raw or Epochs type'): ica.plot_sources('meeow') plt.close('all')
def inscapesMEG_PP(fname, DATA_FOLDER, SAVE_FOLDER): fpath = DATA_FOLDER + fname raw = read_raw_ctf(fpath, preload=True) picks = mne.pick_types(raw.info, meg=True, eog=True, exclude='bads') raw.plot() raw.plot_psd(average=False, picks=picks) ## Filtering high_cutoff = 200 low_cutoff = 0.5 raw.filter(low_cutoff, high_cutoff, fir_design="firwin") raw.notch_filter(np.arange(60, high_cutoff + 1, 60), picks=picks, filter_length='auto', phase='zero', fir_design="firwin") raw.plot_psd(average=False, picks=picks) ## ICA ica = ICA(n_components=20, random_state=0).fit(raw, decim=3) ica.plot_sources(raw) fmax = 40. ## correlation threshold for ICA components (maybe increase to 40. ?) ## FIND ECG COMPONENTS ecg_epochs = create_ecg_epochs(raw, ch_name='EEG059') ecg_inds, ecg_scores = ica.find_bads_ecg(ecg_epochs, ch_name='EEG059') ica.plot_scores(ecg_scores, ecg_inds) ica.plot_properties(ecg_epochs, picks=ecg_inds, psd_args={'fmax': fmax}, image_args={'sigma': 1.}) ## FIND EOG COMPONENTS eog_epochs = create_eog_epochs(raw, ch_name='EEG057') eog_inds, eog_scores = ica.find_bads_eog(eog_epochs, ch_name='EEG057') ica.plot_scores(eog_scores, eog_inds) ica.plot_properties(eog_epochs, picks=eog_inds, psd_args={'fmax': fmax}, image_args={'sigma': 1.}) ## EXCLUDE COMPONENTS ica.exclude = ecg_inds ica.apply(raw) ica.exclude = eog_inds ica.apply(raw) raw.plot() # Plot the clean signal. ## SAVE PREPROCESSED FILE time.sleep(60) raw.save(SAVE_FOLDER + fname + '_preprocessed.fif.gz', overwrite=True) time.sleep(30) filename = SAVE_FOLDER + fname + '_log.html' #!jupyter nbconvert inscapesMEG_preproc.ipynb --output $filename clear_output()
def test_plot_ica_sources(): """Test plotting of ICA panel.""" import matplotlib.pyplot as plt raw = read_raw_fif(raw_fname).crop(0, 1).load_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) ica.exclude = [1] fig = ica.plot_sources(raw) fig.canvas.key_press_event('escape') # Sadly close_event isn't called on Agg backend and the test always passes. assert_array_equal(ica.exclude, [1]) fig = ica.plot_sources(raw, [1]) # test mouse clicks data_ax = fig.axes[0] _fake_click(fig, data_ax, [-0.1, 0.9]) # click on y-label raw.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=epochs) epochs.info['bads'] = [] with warnings.catch_warnings(record=True): # no labeled objects mpl ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click( fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.plot_sources(evoked, exclude=[0]) ica.exclude = [0] ica.plot_sources(evoked) # does the same thing ica.labels_ = dict(eog=[0]) ica.labels_['eog/0/crazy-channel'] = [0] ica.plot_sources(evoked) # now with labels assert_raises(ValueError, ica.plot_sources, 'meeow') plt.close('all')
def test_plot_ica_sources(): """Test plotting of ICA panel.""" raw = read_raw_fif(raw_fname).crop(0, 1).load_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) ica.exclude = [1] fig = ica.plot_sources(raw) fig.canvas.key_press_event('escape') # Sadly close_event isn't called on Agg backend and the test always passes. assert_array_equal(ica.exclude, [1]) plt.close('all') # dtype can change int->np.int after load, test it explicitly ica.n_components_ = np.int64(ica.n_components_) fig = ica.plot_sources(raw, [1]) # also test mouse clicks data_ax = fig.axes[0] _fake_click(fig, data_ax, [-0.1, 0.9]) # click on y-label raw.info['bads'] = ['MEG 0113'] pytest.raises(RuntimeError, ica.plot_sources, inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] pytest.raises(RuntimeError, ica.plot_sources, inst=epochs) epochs.info['bads'] = [] ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.plot_sources(evoked, exclude=[0]) ica.exclude = [0] ica.plot_sources(evoked) # does the same thing ica.labels_ = dict(eog=[0]) ica.labels_['eog/0/crazy-channel'] = [0] ica.plot_sources(evoked) # now with labels pytest.raises(ValueError, ica.plot_sources, 'meeow') plt.close('all')
def run_ica(method, fit_params=None): chn=['AF3','F7','F3','FC5','T7','P7','O1','O2','P8','T8','FC6','F4','F8','AF4'] ica = ICA(n_components=14, method=method, fit_params=fit_params, random_state=75) filt_raw = raw.copy() filt_raw.load_data().filter(l_freq=2.5, h_freq=None) t0 = time() ica.fit(filt_raw) fit_time = time() - t0 title = ('ICA decomposition using %s (took %.1fs)' % (method, fit_time)) ica.plot_sources(raw) ica.plot_components(title=title) ica.exclude = [] # find which ICs match the EOG pattern eog_indices, eog_scores = ica.find_bads_eog(raw,ch_name='AF4') ica.exclude = eog_indices # barplot of ICA component "EOG match" scores ica.plot_scores(eog_scores) print(eog_indices) inpre=input("está de acuerdo con los indices?: (y/n)") if(inpre=='y'): print('ok, sigamos') else: eog_indices=[] n=int(input("elija el numero de indices a incluir: ")) for i in range(0,n): print("introduzca el indice ") eog_indices.append(int(input(": "))) ica.plot_properties(raw, picks=eog_indices) ica.exclude = eog_indices # indices chosen based on various plots above # plot ICs applied to raw data, with EOG matches highlighted ica.plot_sources(raw) # plot ICs applied to the averaged EOG epochs, with EOG matches highlighted ica.plot_overlay(raw,exclude=eog_indices) # ica.apply() changes the Raw object in-place, so let's make a copy first: print('copiando el original') reconst_raw = raw.copy() print('aplicando ICA') ica.apply(reconst_raw) raw.plot(events=events,event_color=mapcol) print('muestra reconstruida') reconst_raw.plot(events=events,event_color=mapcol) plt.show() return reconst_raw
def ica_pipe(sample_raw_bandpass): clf = joblib.load("./models/eog_classifier_v2.joblib") sample_raw_train = sample_raw_bandpass.copy() sample_raw_corrected = sample_raw_bandpass.copy() # Fitting ICA ica = ICA(method="extended-infomax", random_state=1) ica.fit(sample_raw_corrected) maps = _get_ica_map(ica).T scalings = np.linalg.norm(maps, axis=0) maps /= scalings[None, :] X = maps.T # Predict EOG eog_preds = clf.predict(X) list_of_eog = np.where(eog_preds == 1)[0] # ica.plot_sources(inst=sample_raw_train) # ica.plot_components(inst=sample_raw_train) ica.exclude = list_of_eog ica.apply(sample_raw_corrected) return ica, sample_raw_train, sample_raw_corrected
def test_plot_instance_components(browser_backend): """Test plotting of components as instances of raw and epochs.""" raw = _get_raw() picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2) with pytest.warns(RuntimeWarning, match='projection'): ica.fit(raw, picks=picks) ica.exclude = [0] fig = ica.plot_sources(raw, title='Components') keys = ('home', 'home', 'end', 'down', 'up', 'right', 'left', '-', '+', '=', 'd', 'd', 'pageup', 'pagedown', 'z', 'z', 's', 's', 'b') for key in keys: fig._fake_keypress(key) x = fig.mne.traces[0].get_xdata()[0] y = fig.mne.traces[0].get_ydata()[0] fig._fake_click((x, y), xform='data') fig._click_ch_name(ch_index=0, button=1) fig._fake_keypress('escape') browser_backend._close_all() epochs = _get_epochs() fig = ica.plot_sources(epochs, title='Components') for key in keys: fig._fake_keypress(key) # Test a click x = fig.mne.traces[0].get_xdata()[0] y = fig.mne.traces[0].get_ydata()[0] fig._fake_click((x, y), xform='data') fig._click_ch_name(ch_index=0, button=1) fig._fake_keypress('escape')
def test_plot_instance_components(): """Test plotting of components as instances of raw and epochs.""" raw = _get_raw() picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2) with pytest.warns(RuntimeWarning, match='projection'): ica.fit(raw, picks=picks) ica.exclude = [0] fig = ica.plot_sources(raw, title='Components') keys = ('home', 'home', 'end', 'down', 'up', 'right', 'left', '-', '+', '=', 'd', 'd', 'pageup', 'pagedown', 'z', 'z', 's', 's', 'f11', 'b') for key in keys: fig.canvas.key_press_event(key) ax = fig.mne.ax_main line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [-0.1, 0.9]) # click on y-label fig.canvas.key_press_event('escape') plt.close('all') epochs = _get_epochs() fig = ica.plot_sources(epochs, title='Components') for key in keys: fig.canvas.key_press_event(key) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [-0.1, 0.9]) # click on y-label fig.canvas.key_press_event('escape')
def test_plot_ica_sources(): """Test plotting of ICA panel """ import matplotlib.pyplot as plt raw = io.read_raw_fif(raw_fname, preload=False).crop(0, 1, copy=False).load_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) ica.exclude = [1] fig = ica.plot_sources(raw) fig.canvas.key_press_event('escape') # Sadly close_event isn't called on Agg backend and the test always passes. assert_array_equal(ica.exclude, [1]) raw.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=epochs) epochs.info['bads'] = [] with warnings.catch_warnings(record=True): # no labeled objects mpl ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.plot_sources(evoked, exclude=[0]) ica.exclude = [0] ica.plot_sources(evoked) # does the same thing ica.labels_ = dict(eog=[0]) ica.labels_['eog/0/crazy-channel'] = [0] ica.plot_sources(evoked) # now with labels assert_raises(ValueError, ica.plot_sources, 'meeow') plt.close('all')
def run_ica(method, fit_params=None): ica = ICA(n_components=14, method=method, fit_params=fit_params, random_state=95) filt_raw = raw.copy() filt_raw.load_data().filter(l_freq=1., h_freq=None) t0 = time() ica.fit(filt_raw) fit_time = time() - t0 title = ('ICA decomposition using %s (took %.1fs)' % (method, fit_time)) ica.plot_sources(raw) #ica.plot_components(title=title) ica.exclude = [] # find which ICs match the EOG pattern eog_indices, eog_scores = ica.find_bads_eog(raw, ch_name='F4') ica.exclude = eog_indices # barplot of ICA component "EOG match" scores ica.plot_scores(eog_scores) eog_indices, eog_scores = ica.find_bads_eog(raw, ch_name='AF4') ica.exclude = eog_indices # barplot of ICA component "EOG match" scores ica.plot_scores(eog_scores) # plot diagnostics ica.plot_properties(raw, picks=eog_indices) # plot ICs applied to raw data, with EOG matches highlighted ica.plot_sources(raw) # plot ICs applied to the averaged EOG epochs, with EOG matches highlighted #ica.plot_sources(eog_evoked) ica.plot_overlay(raw) ica.exclude = [1, 2] # indices chosen based on various plots above # ica.apply() changes the Raw object in-place, so let's make a copy first: print('copiando el original') reconst_raw = raw.copy() print('aplicando ICA') ica.apply(reconst_raw) raw.plot() print('muestra reconstruida') reconst_raw.plot() plt.show()
def run_events(subject_id): subject = "sub_%03d" % subject_id print("processing subject: %s" % subject) in_path = op.join( data_path, "EEG_Process") #make map yourself in cwd called 'Subjects' process_path = op.join( data_path, "EEG_Process") #make map yourself in cwd called 'EEG_Process' raw_list = list() events_list = list() for run in range(1, 2): fname = op.join(in_path, 'sub_%03d_raw.fif' % (subject_id, )) raw = mne.io.read_raw_fif(fname, preload=True) print(" S %s - R %s" % (subject, run)) #import events and reorganize delay = int(round(0.0345 * raw.info['sfreq'])) events = mne.read_events( op.join(in_path, 'events_%03d-eve.fif' % (subject_id, ))) events[:, 0] = events[:, 0] + delay events_list.append(events) raw_list.append(raw) raw, events = mne.concatenate_raws(raw_list, events_list=events_list) ###some visualizations on the blinks in the raw data file### eog_events = mne.preprocessing.find_eog_events(raw) onsets = eog_events[:, 0] / raw.info['sfreq'] - 0.25 durations = [0.5] * len(eog_events) descriptions = ['bad blink'] * len(eog_events) blink_annot = mne.Annotations(onsets, durations, descriptions, orig_time=raw.info['meas_date']) raw.set_annotations(blink_annot) eeg_picks = mne.pick_types(raw.info, eeg=True) raw.plot(events=eog_events, order=eeg_picks) ###CONCLUSION: NOT THE BEST ALGORITHM #####ICA##### ica = ICA(random_state=97, n_components=15) picks = mne.pick_types(raw.info, eeg=True, eog=True, stim=False, exclude='bads') ica.fit(raw, picks=picks) raw.load_data() ica.plot_sources(raw) ica.plot_components() ica.plot_overlay(raw, exclude=[6], picks='eeg') #visualize the difference raw2 = raw.copy() ica.exclude = [6] ica.apply(raw2) raw2.plot() ica.plot_properties(raw, picks=[6])
def test_plot_ica_sources(): """Test plotting of ICA panel """ import matplotlib.pyplot as plt raw = io.Raw(raw_fname, preload=False) raw.crop(0, 1, copy=False) raw.load_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) raw.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=epochs) epochs.info['bads'] = [] with warnings.catch_warnings(record=True): # no labeled objects mpl ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click( fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.plot_sources(evoked, exclude=[0]) ica.exclude = [0] ica.plot_sources(evoked) # does the same thing ica.labels_ = dict(eog=[0]) ica.labels_['eog/0/crazy-channel'] = [0] ica.plot_sources(evoked) # now with labels assert_raises(ValueError, ica.plot_sources, 'meeow') plt.close('all')
def drop_artefacts(self, n_components, raw, a, b): """ Use the ICA to eliminate windows contaminated with blinking """ ica = ICA(n_components=n_components) ica.fit(raw) picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') raw.load_data() ica.plot_sources(raw) ica.plot_components(layout=read_layout('eeg1005')) ica.exclude = [a, b] reconst_raw = raw.copy() ica.apply(reconst_raw) return reconst_raw
def remove_eog_ica(raw, n_components, ch_name, threshold): """Remove EOG artifacts by ICA. Parameters ---------- raw : instance of Raw. The raw data. n_components : int Number of principal components for ICA. ch_name : str The name of the channel to use for EOG peak detection. threshold : int The value above which a feature is classified as outlier. Returns ------- raw : instance of Raw. The raw data. Notes ----- """ ica = ICA(n_components=n_components, max_iter='auto') ica.fit(raw, verbose=0) while threshold > 1: eog_inds, _ = ica.find_bads_eog(raw, ch_name=ch_name, threshold=threshold, verbose=0) if eog_inds: break threshold -= 0.3 if not eog_inds: raise RuntimeError('Didn\'t find a EOG component.') ica.plot_properties(raw, eog_inds) ica.exclude = eog_inds ica.apply(raw, verbose=0) return raw
def preprocess(eeg_rawdata): """ :param eeg_rawdata: numpy array with the shape of (n_channels, n_samples) :return: filtered EEG raw data """ assert eeg_rawdata.shape[0] == 62 eeg_rawdata = np.array(eeg_rawdata) temp = 0 - (eeg_rawdata.shape[1] % 5) if temp != 0: eeg_rawdata = eeg_rawdata[:, :temp] ch_names = [ 'FP1', 'FPZ', 'FP2', 'AF3', 'AF4', 'F7', 'F5', 'F3', 'F1', 'FZ', 'F2', 'F4', 'F6', 'F8', 'FT7', 'FC5', 'FC3', 'FC1', 'FCZ', 'FC2', 'FC4', 'FC6', 'FT8', 'T7', 'C5', 'C3', 'C1', 'CZ', 'C2', 'C4', 'C6', 'T8', 'TP7', 'CP5', 'CP3', 'CP1', 'CPZ', 'CP2', 'CP4', 'CP6', 'TP8', 'P7', 'P5', 'P3', 'P1', 'PZ', 'P2', 'P4', 'P6', 'P8', 'PO7', 'PO5', 'PO3', 'POZ', 'PO4', 'PO6', 'PO8', 'CB1', 'O1', 'OZ', 'O2', 'CB2' ] info = mne.create_info( # 通道名 ch_names=ch_names, # 通道类型 ch_types=['eeg' for _ in range(62)], # 采样频率 sfreq=1000) raw_data = mne.io.RawArray(eeg_rawdata, info) raw_data.load_data().filter(l_freq=1., h_freq=75) raw_data.resample(200) ica = ICA(n_components=5, random_state=97) ica.fit(raw_data) eog_indices, eog_scores = ica.find_bads_eog(raw_data, ch_name='FP1') a = abs(eog_scores).tolist() ica.exclude = [a.index(max(a))] ica.apply(raw_data) filted_eeg_rawdata = np.array(raw_data.get_data()) return filted_eeg_rawdata
def run_ica(epochs: Epochs, fit_params: dict = None) -> ICA: """ Runs ICA decomposition on Epochs instance. If there are no EOG channels found, it tries to use 'Fp1' and 'Fp2' as EOG channels; if they are not found either, it chooses the first two channels to identify EOG components with mne.preprocessing.ica.find_bads_eog(). Parameters ---------- epochs: the instance to be used for ICA decomposition fit_params: parameters to be passed to ICA fit (e.g. orthogonal picard, extended infomax) Returns ------- ICA instance """ ica = ICA( n_components=settings["ica"]["n_components"], random_state=42, method=settings["ica"]["method"], fit_params=fit_params, ) ica_epochs = epochs.copy() ica.fit(ica_epochs, decim=settings["ica"]["decim"]) if "eog" not in epochs.get_channel_types(): if "Fp1" and "Fp2" in epochs.get_montage().ch_names: eog_channels = ["Fp1", "Fp2"] else: eog_channels = epochs.get_montage().ch_names[:2] logger.info("EOG channels are not found. Attempting to use " f'{",".join(eog_channels)} channels as EOG channels.') ica_epochs.set_channel_types({ch: "eog" for ch in eog_channels}) eog_indices, _ = ica.find_bads_eog(ica_epochs) ica.exclude = eog_indices return ica
def test_plot_ica_sources(): """Test plotting of ICA panel """ import matplotlib.pyplot as plt raw = io.Raw(raw_fname, preload=False) raw.crop(0, 1, copy=False) raw.preload_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) raw.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=epochs) epochs.info['bads'] = [] with warnings.catch_warnings(record=True): # no labeled objects mpl ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.plot_sources(evoked, exclude=[0]) ica.exclude = [0] ica.plot_sources(evoked) # does the same thing assert_raises(ValueError, ica.plot_sources, 'meeow') plt.close('all')
def test_ica_additional(method): """Test additional ICA functionality.""" _skip_check_picard(method) tempdir = _TempDir() stop2 = 500 raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() raw.del_proj() # avoid warnings raw.set_annotations(Annotations([0.5], [0.5], ['BAD'])) # XXX This breaks the tests :( # raw.info['bads'] = [raw.ch_names[1]] test_cov = read_cov(test_cov_name) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[1::2] epochs = Epochs(raw, events, None, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, proj=False) epochs.decimate(3, verbose='error') assert len(epochs) == 4 # test if n_components=None works ica = ICA(n_components=None, max_pca_components=None, n_pca_components=None, random_state=0, method=method, max_iter=1) with pytest.warns(UserWarning, match='did not converge'): ica.fit(epochs) # for testing eog functionality picks2 = np.concatenate([picks, pick_types(raw.info, False, eog=True)]) epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2, baseline=(None, 0), preload=True) del picks2 test_cov2 = test_cov.copy() ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4, method=method) assert (ica.info is None) with pytest.warns(RuntimeWarning, match='normalize_proj'): ica.fit(raw, picks[:5]) assert (isinstance(ica.info, Info)) assert (ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, method=method, n_pca_components=4, random_state=0) pytest.raises(RuntimeError, ica.save, '') ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2) # check passing a ch_name to find_bads_ecg with pytest.warns(RuntimeWarning, match='longer'): _, scores_1 = ica.find_bads_ecg(raw) _, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1]) assert scores_1[0] != scores_2[0] # test corrmap ica2 = ica.copy() ica3 = ica.copy() corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True, ch_type="mag") corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False) assert (ica.labels_["blinks"] == ica2.labels_["blinks"]) assert (0 in ica.labels_["blinks"]) # test retrieval of component maps as arrays components = ica.get_components() template = components[:, 0] EvokedArray(components, ica.info, tmin=0.).plot_topomap([0], time_unit='s') corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True, ch_type="mag") assert (ica2.labels_["blinks"] == ica3.labels_["blinks"]) plt.close('all') # make sure a single threshold in a list works corrmap([ica, ica3], template, threshold=[0.5], label='blinks', plot=True, ch_type="mag") ica_different_channels = ICA(n_components=2, random_state=0).fit(raw, picks=[2, 3, 4, 5]) pytest.raises(ValueError, corrmap, [ica_different_channels, ica], (0, 0)) # test warnings on bad filenames ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz') with pytest.warns(RuntimeWarning, match='-ica.fif'): ica.save(ica_badname) with pytest.warns(RuntimeWarning, match='-ica.fif'): read_ica(ica_badname) # test decim ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4, method=method, max_iter=1) raw_ = raw.copy() for _ in range(3): raw_.append(raw_) n_samples = raw_._data.shape[1] with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw, picks=picks[:5], decim=3) assert raw_._data.shape[1] == n_samples # test expl var ica = ICA(n_components=1.0, max_pca_components=4, n_pca_components=4, method=method, max_iter=1) with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw, picks=None, decim=3) assert (ica.n_components_ == 4) ica_var = _ica_explained_variance(ica, raw, normalize=True) assert (np.all(ica_var[:-1] >= ica_var[1:])) # test ica sorting ica.exclude = [0] ica.labels_ = dict(blink=[0], think=[1]) ica_sorted = _sort_components(ica, [3, 2, 1, 0], copy=True) assert_equal(ica_sorted.exclude, [3]) assert_equal(ica_sorted.labels_, dict(blink=[3], think=[2])) # epochs extraction from raw fit pytest.raises(RuntimeError, ica.get_sources, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4, n_pca_components=4, method=method, max_iter=1) with pytest.warns(None): # ICA does not converge ica.fit(raw, picks=picks[:10], start=start, stop=stop2) sources = ica.get_sources(epochs).get_data() assert (ica.mixing_matrix_.shape == (2, 2)) assert (ica.unmixing_matrix_.shape == (2, 2)) assert (ica.pca_components_.shape == (4, 10)) assert (sources.shape[1] == ica.n_components_) for exclude in [[], [0], np.array([1, 2, 3])]: ica.exclude = exclude ica.labels_ = {'foo': [0]} ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert (list(ica.exclude) == ica_read.exclude) assert_equal(ica.labels_, ica_read.labels_) ica.apply(raw) ica.exclude = [] ica.apply(raw, exclude=[1]) assert (ica.exclude == []) ica.exclude = [0, 1] ica.apply(raw, exclude=[1]) assert (ica.exclude == [0, 1]) ica_raw = ica.get_sources(raw) assert (ica.exclude == [ ica_raw.ch_names.index(e) for e in ica_raw.info['bads'] ]) # test filtering d1 = ica_raw._data[0].copy() ica_raw.filter(4, 20, fir_design='firwin2') assert_equal(ica_raw.info['lowpass'], 20.) assert_equal(ica_raw.info['highpass'], 4.) assert ((d1 != ica_raw._data[0]).any()) d1 = ica_raw._data[0].copy() ica_raw.notch_filter([10], trans_bandwidth=10, fir_design='firwin') assert ((d1 != ica_raw._data[0]).any()) ica.n_pca_components = 2 ica.method = 'fake' ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert (ica.n_pca_components == ica_read.n_pca_components) assert_equal(ica.method, ica_read.method) assert_equal(ica.labels_, ica_read.labels_) # check type consistency attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ ' 'pca_explained_variance_ pre_whitener_') def f(x, y): return getattr(x, y).dtype for attr in attrs.split(): assert_equal(f(ica_read, attr), f(ica, attr)) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) for attr in [ 'mixing_matrix_', 'unmixing_matrix_', 'pca_components_', 'pca_mean_', 'pca_explained_variance_', 'pre_whitener_' ]: assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr)) assert (ica.ch_names == ica_read.ch_names) assert (isinstance(ica_read.info, Info)) sources = ica.get_sources(raw)[:, :][0] sources2 = ica_read.get_sources(raw)[:, :][0] assert_array_almost_equal(sources, sources2) _raw1 = ica.apply(raw, exclude=[1]) _raw2 = ica_read.apply(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check score funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(raw, target='EOG 061', score_func=func, start=0, stop=10) assert (ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(raw, start=0, stop=50, score_func=stats.skew) # check exception handling pytest.raises(ValueError, ica.score_sources, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # variance, kurtosis params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) # Make sure detect_artifacts marks the right components. # For int criterion, the doc says "E.g. range(2) would return the two # sources with the highest score". Assert that's what it does. # Only test for skew, since it's always the same code. ica.exclude = [] ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=None, eog_ch=None, skew_criterion=0, var_criterion=None, kurt_criterion=None) assert np.abs(scores[ica.exclude]) == np.max(np.abs(scores)) evoked = epochs.average() evoked_data = evoked.data.copy() raw_data = raw[:][0].copy() epochs_data = epochs.get_data().copy() with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_ecg(raw, method='ctps') assert_equal(len(scores), ica.n_components_) with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_ecg(raw, method='correlation') assert_equal(len(scores), ica.n_components_) with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(epochs, method='ctps') assert_equal(len(scores), ica.n_components_) pytest.raises(ValueError, ica.find_bads_ecg, epochs.average(), method='ctps') pytest.raises(ValueError, ica.find_bads_ecg, raw, method='crazy-coupling') with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) raw.info['chs'][raw.ch_names.index('EOG 061') - 1]['kind'] = 202 with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_eog(raw) assert (isinstance(scores, list)) assert_equal(len(scores[0]), ica.n_components_) idx, scores = ica.find_bads_eog(evoked, ch_name='MEG 1441') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(evoked, method='correlation') assert_equal(len(scores), ica.n_components_) assert_array_equal(raw_data, raw[:][0]) assert_array_equal(epochs_data, epochs.get_data()) assert_array_equal(evoked_data, evoked.data) # check score funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(epochs_eog, target='EOG 061', score_func=func) assert (ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(epochs, score_func=stats.skew) # check exception handling pytest.raises(ValueError, ica.score_sources, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.score_sources(raw, target='MEG 1531', score_func='pearsonr') with pytest.warns(RuntimeWarning, match='longer'): ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert (ecg_events.ndim == 2) # eog functionality eog_scores = ica.score_sources(raw, target='EOG 061', score_func='pearsonr') with pytest.warns(RuntimeWarning, match='longer'): eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert (eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.get_sources(raw, start=0, stop=100) assert (ica_raw.last_samp - ica_raw.first_samp == 100) assert_equal(len(ica_raw._filenames), 1) # API consistency ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert (ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif') ica.n_components = np.int32(ica.n_components) ica_raw.save(test_ica_fname, overwrite=True) ica_raw2 = read_raw_fif(test_ica_fname, preload=True) assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.get_sources(epochs) assert (ica_epochs.events.shape == epochs.events.shape) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert (ica.n_components_ == len(ica_chans)) assert (ica.n_components_ == ica_epochs.get_data().shape[1]) assert (ica_epochs._raw is None) assert (ica_epochs.preload is True) # test float n pca components ica.pca_explained_variance_ = np.array([0.2] * 5) ica.n_components_ = 0 for ncomps, expected in [[0.3, 1], [0.9, 4], [1, 1]]: ncomps_ = ica._check_n_pca_components(ncomps) assert (ncomps_ == expected) ica = ICA(method=method) with pytest.warns(None): # sometimes does not converge ica.fit(raw, picks=picks[:5]) with pytest.warns(RuntimeWarning, match='longer'): ica.find_bads_ecg(raw) ica.find_bads_eog(epochs, ch_name='MEG 0121') assert_array_equal(raw_data, raw[:][0]) raw.drop_channels(['MEG 0122']) pytest.raises(RuntimeError, ica.find_bads_eog, raw) with pytest.warns(RuntimeWarning, match='longer'): pytest.raises(RuntimeError, ica.find_bads_ecg, raw)
# # # Selecting ICA components manually # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Once we're certain which components we want to exclude, we can specify that # manually by setting the ``ica.exclude`` attribute. Similar to marking bad # channels, merely setting ``ica.exclude`` doesn't do anything immediately (it # just adds the excluded ICs to a list that will get used later when it's # needed). Once the exclusions have been set, ICA methods like # :meth:`~mne.preprocessing.ICA.plot_overlay` will exclude those component(s) # even if no ``exclude`` parameter is passed, and the list of excluded # components will be preserved when using :meth:`mne.preprocessing.ICA.save` # and :func:`mne.preprocessing.read_ica`. ica.exclude = [0, 1] # indices chosen based on various plots above ############################################################################### # Now that the exclusions have been set, we can reconstruct the sensor signals # with artifacts removed using the :meth:`~mne.preprocessing.ICA.apply` method # (remember, we're applying the ICA solution from the *filtered* data to the # original *unfiltered* signal). Plotting the original raw data alongside the # reconstructed data shows that the heartbeat and blink artifacts are repaired. # ica.apply() changes the Raw object in-place, so let's make a copy first: reconst_raw = raw.copy() ica.apply(reconst_raw) raw.plot(order=artifact_picks, n_channels=len(artifact_picks), show_scrollbars=False) reconst_raw.plot(order=artifact_picks, n_channels=len(artifact_picks),
def main(): ################################################# ## SETUP ## Get list of subject files subj_files = listdir(DAT_PATH) subj_files = [file for file in subj_files if EXT.lower() in file.lower()] ## Set up FOOOF Objects # Initialize FOOOF settings & objects objects fooof_settings = FOOOFSettings(peak_width_limits=PEAK_WIDTH_LIMITS, max_n_peaks=MAX_N_PEAKS, min_peak_amplitude=MIN_PEAK_AMP, peak_threshold=PEAK_THRESHOLD, aperiodic_mode=APERIODIC_MODE) fm = FOOOF(*fooof_settings, verbose=False) fg = FOOOFGroup(*fooof_settings, verbose=False) # Save out a settings file fg.save('0-FOOOF_Settings', pjoin(RES_PATH, 'FOOOF'), save_settings=True) # Set up the dictionary to store all the FOOOF results fg_dict = dict() for load_label in LOAD_LABELS: fg_dict[load_label] = dict() for side_label in SIDE_LABELS: fg_dict[load_label][side_label] = dict() for seg_label in SEG_LABELS: fg_dict[load_label][side_label][seg_label] = [] ## Initialize group level data stores n_subjs, n_conds, n_times = len(subj_files), 3, N_TIMES group_fooofed_alpha_freqs = np.zeros(shape=[n_subjs]) dropped_components = np.ones(shape=[n_subjs, 50]) * 999 dropped_trials = np.ones(shape=[n_subjs, 1500]) * 999 canonical_group_avg_dat = np.zeros(shape=[n_subjs, n_conds, n_times]) fooofed_group_avg_dat = np.zeros(shape=[n_subjs, n_conds, n_times]) # Set channel types ch_types = {'LHor' : 'eog', 'RHor' : 'eog', 'IVer' : 'eog', 'SVer' : 'eog', 'LMas' : 'misc', 'RMas' : 'misc', 'Nose' : 'misc', 'EXG8' : 'misc'} ################################################# ## RUN ACROSS ALL SUBJECTS # Run analysis across each subject for s_ind, subj_file in enumerate(subj_files): # Get subject label and print status subj_label = subj_file.split('.')[0] print('\nCURRENTLY RUNNING SUBJECT: ', subj_label, '\n') ################################################# ## LOAD / ORGANIZE / SET-UP DATA # Load subject of data, apply apply fixes for channels, etc eeg_dat = mne.io.read_raw_edf(pjoin(DAT_PATH, subj_file), preload=True, verbose=False) # Fix channel name labels eeg_dat.info['ch_names'] = [chl[2:] for chl in \ eeg_dat.ch_names[:-1]] + [eeg_dat.ch_names[-1]] for ind, chi in enumerate(eeg_dat.info['chs']): eeg_dat.info['chs'][ind]['ch_name'] = eeg_dat.info['ch_names'][ind] # Update channel types eeg_dat.set_channel_types(ch_types) # Set reference - average reference eeg_dat = eeg_dat.set_eeg_reference(ref_channels='average', projection=False, verbose=False) # Set channel montage chs = mne.channels.read_montage('standard_1020', eeg_dat.ch_names) eeg_dat.set_montage(chs) # Get event information & check all used event codes evs = mne.find_events(eeg_dat, shortest_event=1, verbose=False) # Pull out sampling rate srate = eeg_dat.info['sfreq'] ################################################# ## Pre-Processing: ICA # High-pass filter data for running ICA eeg_dat.filter(l_freq=1., h_freq=None, fir_design='firwin') if RUN_ICA: print("\nICA: CALCULATING SOLUTION\n") # ICA settings method = 'fastica' n_components = 0.99 random_state = 47 reject = {'eeg': 20e-4} # Initialize ICA object ica = ICA(n_components=n_components, method=method, random_state=random_state) # Fit ICA ica.fit(eeg_dat, reject=reject) # Save out ICA solution ica.save(pjoin(RES_PATH, 'ICA', subj_label + '-ica.fif')) # Otherwise: load previously saved ICA to apply else: print("\nICA: USING PRECOMPUTED\n") ica = read_ica(pjoin(RES_PATH, 'ICA', subj_label + '-ica.fif')) # Find components to drop, based on correlation with EOG channels drop_inds = [] for chi in EOG_CHS: inds, _ = ica.find_bads_eog(eeg_dat, ch_name=chi, threshold=2.5, l_freq=1, h_freq=10, verbose=False) drop_inds.extend(inds) drop_inds = list(set(drop_inds)) # Set which components to drop, and collect record of this ica.exclude = drop_inds dropped_components[s_ind, 0:len(drop_inds)] = drop_inds # Apply ICA to data eeg_dat = ica.apply(eeg_dat) ################################################# ## SORT OUT EVENT CODES # Extract a list of all the event labels all_trials = [it for it2 in EV_DICT.values() for it in it2] # Create list of new event codes to be used to label correct trials (300s) all_trials_new = [it + 100 for it in all_trials] # This is an annoying way to collapse across the doubled event markers from above all_trials_new = [it - 1 if not ind%2 == 0 else it for ind, it in enumerate(all_trials_new)] # Get labelled dictionary of new event names ev_dict2 = {k:v for k, v in zip(EV_DICT.keys(), set(all_trials_new))} # Initialize variables to store new event definitions evs2 = np.empty(shape=[0, 3], dtype='int64') lags = np.array([]) # Loop through, creating new events for all correct trials t_min, t_max = -0.4, 3.0 for ref_id, targ_id, new_id in zip(all_trials, CORR_CODES * 6, all_trials_new): t_evs, t_lags = mne.event.define_target_events(evs, ref_id, targ_id, srate, t_min, t_max, new_id) if len(t_evs) > 0: evs2 = np.vstack([evs2, t_evs]) lags = np.concatenate([lags, t_lags]) ################################################# ## FOOOF # Set channel of interest ch_ind = eeg_dat.ch_names.index(CHL) # Calculate PSDs over ~ first 2 minutes of data, for specified channel fmin, fmax = 1, 50 tmin, tmax = 5, 125 psds, freqs = mne.time_frequency.psd_welch(eeg_dat, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, n_fft=int(2*srate), n_overlap=int(srate), n_per_seg=int(2*srate), verbose=False) # Fit FOOOF across all channels fg.fit(freqs, psds, FREQ_RANGE, n_jobs=-1) # Save out FOOOF results fg.save(subj_label + '_fooof', pjoin(RES_PATH, 'FOOOF'), save_results=True) # Extract individualized CF from specified channel, add to group collection fm = fg.get_fooof(ch_ind, False) fooof_freq, _, _ = get_band_peak(fm.peak_params_, [7, 14]) group_fooofed_alpha_freqs[s_ind] = fooof_freq # If not FOOOF alpha extracted, reset to 10 if np.isnan(fooof_freq): fooof_freq = 10 ################################################# ## ALPHA FILTERING # CANONICAL: Filter data to canonical alpha band: 8-12 Hz alpha_dat = eeg_dat.copy() alpha_dat.filter(8, 12, fir_design='firwin', verbose=False) alpha_dat.apply_hilbert(envelope=True, verbose=False) # FOOOF: Filter data to FOOOF derived alpha band fooof_dat = eeg_dat.copy() fooof_dat.filter(fooof_freq-2, fooof_freq+2, fir_design='firwin') fooof_dat.apply_hilbert(envelope=True) ################################################# ## EPOCH TRIALS # Set epoch timings tmin, tmax = -0.85, 1.1 # Epoch trials - raw data for trial rejection epochs = mne.Epochs(eeg_dat, evs2, ev_dict2, tmin=tmin, tmax=tmax, baseline=None, preload=True, verbose=False) # Epoch trials - filtered version epochs_alpha = mne.Epochs(alpha_dat, evs2, ev_dict2, tmin=tmin, tmax=tmax, baseline=(-0.5, -0.35), preload=True, verbose=False) epochs_fooof = mne.Epochs(fooof_dat, evs2, ev_dict2, tmin=tmin, tmax=tmax, baseline=(-0.5, -0.35), preload=True, verbose=False) ################################################# ## PRE-PROCESSING: AUTO-REJECT if RUN_AUTOREJECT: print('\nAUTOREJECT: CALCULATING SOLUTION\n') # Initialize and run autoreject across epochs ar = AutoReject(n_jobs=4, verbose=False) ar.fit(epochs) # Save out AR solution ar.save(pjoin(RES_PATH, 'AR', subj_label + '-ar.hdf5'), overwrite=True) # Otherwise: load & apply previously saved AR solution else: print('\nAUTOREJECT: USING PRECOMPUTED\n') ar = read_auto_reject(pjoin(RES_PATH, 'AR', subj_label + '-ar.hdf5')) ar.verbose = 'tqdm' # Apply autoreject to the original epochs object it was learnt on epochs, rej_log = ar.transform(epochs, return_log=True) # Apply autoreject to the copies of the data - apply interpolation, then drop same epochs _apply_interp(rej_log, epochs_alpha, ar.threshes_, ar.picks_, ar.verbose) epochs_alpha.drop(rej_log.bad_epochs) _apply_interp(rej_log, epochs_fooof, ar.threshes_, ar.picks_, ar.verbose) epochs_fooof.drop(rej_log.bad_epochs) # Collect which epochs were dropped dropped_trials[s_ind, 0:sum(rej_log.bad_epochs)] = np.where(rej_log.bad_epochs)[0] ################################################# ## SET UP CHANNEL CLUSTERS # Set channel clusters - take channels contralateral to stimulus presentation # Note: channels will be used to extract data contralateral to stimulus presentation le_chs = ['P3', 'P5', 'P7', 'P9', 'O1', 'PO3', 'PO7'] # Left Side Channels le_inds = [epochs.ch_names.index(chn) for chn in le_chs] ri_chs = ['P4', 'P6', 'P8', 'P10', 'O2', 'PO4', 'PO8'] # Right Side Channels ri_inds = [epochs.ch_names.index(chn) for chn in ri_chs] ################################################# ## TRIAL-RELATED ANALYSIS: CANONICAL vs. FOOOF ## Pull out channels of interest for each load level # Channels extracted are those contralateral to stimulus presentation # Canonical Data lo1_a = np.concatenate([epochs_alpha['LeLo1']._data[:, ri_inds, :], epochs_alpha['RiLo1']._data[:, le_inds, :]], 0) lo2_a = np.concatenate([epochs_alpha['LeLo2']._data[:, ri_inds, :], epochs_alpha['RiLo2']._data[:, le_inds, :]], 0) lo3_a = np.concatenate([epochs_alpha['LeLo3']._data[:, ri_inds, :], epochs_alpha['RiLo3']._data[:, le_inds, :]], 0) # FOOOFed data lo1_f = np.concatenate([epochs_fooof['LeLo1']._data[:, ri_inds, :], epochs_fooof['RiLo1']._data[:, le_inds, :]], 0) lo2_f = np.concatenate([epochs_fooof['LeLo2']._data[:, ri_inds, :], epochs_fooof['RiLo2']._data[:, le_inds, :]], 0) lo3_f = np.concatenate([epochs_fooof['LeLo3']._data[:, ri_inds, :], epochs_fooof['RiLo3']._data[:, le_inds, :]], 0) ## Calculate average across trials and channels - add to group data collection # Canonical data canonical_group_avg_dat[s_ind, 0, :] = np.mean(lo1_a, 1).mean(0) canonical_group_avg_dat[s_ind, 1, :] = np.mean(lo2_a, 1).mean(0) canonical_group_avg_dat[s_ind, 2, :] = np.mean(lo3_a, 1).mean(0) # FOOOFed data fooofed_group_avg_dat[s_ind, 0, :] = np.mean(lo1_f, 1).mean(0) fooofed_group_avg_dat[s_ind, 1, :] = np.mean(lo2_f, 1).mean(0) fooofed_group_avg_dat[s_ind, 2, :] = np.mean(lo3_f, 1).mean(0) ################################################# ## FOOOFING TRIAL AVERAGED DATA # Loop loop loads & trials segments for seg_label, seg_time in zip(SEG_LABELS, SEG_TIMES): tmin, tmax = seg_time[0], seg_time[1] # Calculate PSDs across trials, fit FOOOF models to averages for le_label, ri_label, load_label in zip(['LeLo1', 'LeLo2', 'LeLo3'], ['RiLo1', 'RiLo2', 'RiLo3'], LOAD_LABELS): ## Calculate trial wise PSDs for left & right side trials trial_freqs, le_trial_psds = periodogram( epochs[le_label]._data[:, :, _time_mask(epochs.times, tmin, tmax, srate)], srate, window='hann', nfft=4*srate) trial_freqs, ri_trial_psds = periodogram( epochs[ri_label]._data[:, :, _time_mask(epochs.times, tmin, tmax, srate)], srate, window='hann', nfft=4*srate) ## FIT ALL CHANNELS VERSION if FIT_ALL_CHANNELS: ## Average spectra across trials within a given load & side le_avg_psd_contra = avg_func(le_trial_psds[:, ri_inds, :], 0) le_avg_psd_ipsi = avg_func(le_trial_psds[:, le_inds, :], 0) ri_avg_psd_contra = avg_func(ri_trial_psds[:, le_inds, :], 0) ri_avg_psd_ipsi = avg_func(ri_trial_psds[:, ri_inds, :], 0) ## Combine spectra across left & right trials for given load ch_psd_contra = np.vstack([le_avg_psd_contra, ri_avg_psd_contra]) ch_psd_ipsi = np.vstack([le_avg_psd_ipsi, ri_avg_psd_ipsi]) ## Fit FOOOFGroup to all channels, average & and collect results fg.fit(trial_freqs, ch_psd_contra, FREQ_RANGE) fm = avg_fg(fg) fg_dict[load_label]['Contra'][seg_label].append(fm.copy()) fg.fit(trial_freqs, ch_psd_ipsi, FREQ_RANGE) fm = avg_fg(fg) fg_dict[load_label]['Ipsi'][seg_label].append(fm.copy()) ## COLLAPSE ACROSS CHANNELS VERSION else: ## Average spectra across trials and channels within a given load & side le_avg_psd_contra = avg_func(avg_func(le_trial_psds[:, ri_inds, :], 0), 0) le_avg_psd_ipsi = avg_func(avg_func(le_trial_psds[:, le_inds, :], 0), 0) ri_avg_psd_contra = avg_func(avg_func(ri_trial_psds[:, le_inds, :], 0), 0) ri_avg_psd_ipsi = avg_func(avg_func(ri_trial_psds[:, ri_inds, :], 0), 0) ## Collapse spectra across left & right trials for given load avg_psd_contra = avg_func(np.vstack([le_avg_psd_contra, ri_avg_psd_contra]), 0) avg_psd_ipsi = avg_func(np.vstack([le_avg_psd_ipsi, ri_avg_psd_ipsi]), 0) ## Fit FOOOF, and collect results fm.fit(trial_freqs, avg_psd_contra, FREQ_RANGE) fg_dict[load_label]['Contra'][seg_label].append(fm.copy()) fm.fit(trial_freqs, avg_psd_ipsi, FREQ_RANGE) fg_dict[load_label]['Ipsi'][seg_label].append(fm.copy()) ################################################# ## SAVE OUT RESULTS # Save out group data np.save(pjoin(RES_PATH, 'Group', 'alpha_freqs_group'), group_fooofed_alpha_freqs) np.save(pjoin(RES_PATH, 'Group', 'canonical_group'), canonical_group_avg_dat) np.save(pjoin(RES_PATH, 'Group', 'fooofed_group'), fooofed_group_avg_dat) np.save(pjoin(RES_PATH, 'Group', 'dropped_trials'), dropped_trials) np.save(pjoin(RES_PATH, 'Group', 'dropped_components'), dropped_components) # Save out second round of FOOOFing for load_label in LOAD_LABELS: for side_label in SIDE_LABELS: for seg_label in SEG_LABELS: fg = combine_fooofs(fg_dict[load_label][side_label][seg_label]) fg.save('Group_' + load_label + '_' + side_label + '_' + seg_label, pjoin(RES_PATH, 'FOOOF'), save_results=True)
def test_ica_additional(method): """Test additional ICA functionality.""" _skip_check_picard(method) tempdir = _TempDir() stop2 = 500 raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() raw.del_proj() # avoid warnings raw.set_annotations(Annotations([0.5], [0.5], ['BAD'])) # XXX This breaks the tests :( # raw.info['bads'] = [raw.ch_names[1]] test_cov = read_cov(test_cov_name) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[1::2] epochs = Epochs(raw, events, None, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, proj=False) epochs.decimate(3, verbose='error') assert len(epochs) == 4 # test if n_components=None works ica = ICA(n_components=None, max_pca_components=None, n_pca_components=None, random_state=0, method=method, max_iter=1) with pytest.warns(UserWarning, match='did not converge'): ica.fit(epochs) # for testing eog functionality picks2 = np.concatenate([picks, pick_types(raw.info, False, eog=True)]) epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2, baseline=(None, 0), preload=True) del picks2 test_cov2 = test_cov.copy() ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4, method=method) assert (ica.info is None) with pytest.warns(RuntimeWarning, match='normalize_proj'): ica.fit(raw, picks[:5]) assert (isinstance(ica.info, Info)) assert (ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, method=method, n_pca_components=4, random_state=0) pytest.raises(RuntimeError, ica.save, '') ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2) # check passing a ch_name to find_bads_ecg with pytest.warns(RuntimeWarning, match='longer'): _, scores_1 = ica.find_bads_ecg(raw) _, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1]) assert scores_1[0] != scores_2[0] # test corrmap ica2 = ica.copy() ica3 = ica.copy() corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True, ch_type="mag") corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False) assert (ica.labels_["blinks"] == ica2.labels_["blinks"]) assert (0 in ica.labels_["blinks"]) # test retrieval of component maps as arrays components = ica.get_components() template = components[:, 0] EvokedArray(components, ica.info, tmin=0.).plot_topomap([0], time_unit='s') corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True, ch_type="mag") assert (ica2.labels_["blinks"] == ica3.labels_["blinks"]) plt.close('all') ica_different_channels = ICA(n_components=2, random_state=0).fit( raw, picks=[2, 3, 4, 5]) pytest.raises(ValueError, corrmap, [ica_different_channels, ica], (0, 0)) # test warnings on bad filenames ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz') with pytest.warns(RuntimeWarning, match='-ica.fif'): ica.save(ica_badname) with pytest.warns(RuntimeWarning, match='-ica.fif'): read_ica(ica_badname) # test decim ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4, method=method, max_iter=1) raw_ = raw.copy() for _ in range(3): raw_.append(raw_) n_samples = raw_._data.shape[1] with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw, picks=picks[:5], decim=3) assert raw_._data.shape[1] == n_samples # test expl var ica = ICA(n_components=1.0, max_pca_components=4, n_pca_components=4, method=method, max_iter=1) with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw, picks=None, decim=3) assert (ica.n_components_ == 4) ica_var = _ica_explained_variance(ica, raw, normalize=True) assert (np.all(ica_var[:-1] >= ica_var[1:])) # test ica sorting ica.exclude = [0] ica.labels_ = dict(blink=[0], think=[1]) ica_sorted = _sort_components(ica, [3, 2, 1, 0], copy=True) assert_equal(ica_sorted.exclude, [3]) assert_equal(ica_sorted.labels_, dict(blink=[3], think=[2])) # epochs extraction from raw fit pytest.raises(RuntimeError, ica.get_sources, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4, n_pca_components=4, method=method, max_iter=1) with pytest.warns(None): # ICA does not converge ica.fit(raw, picks=picks[:10], start=start, stop=stop2) sources = ica.get_sources(epochs).get_data() assert (ica.mixing_matrix_.shape == (2, 2)) assert (ica.unmixing_matrix_.shape == (2, 2)) assert (ica.pca_components_.shape == (4, 10)) assert (sources.shape[1] == ica.n_components_) for exclude in [[], [0], np.array([1, 2, 3])]: ica.exclude = exclude ica.labels_ = {'foo': [0]} ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert (list(ica.exclude) == ica_read.exclude) assert_equal(ica.labels_, ica_read.labels_) ica.apply(raw) ica.exclude = [] ica.apply(raw, exclude=[1]) assert (ica.exclude == []) ica.exclude = [0, 1] ica.apply(raw, exclude=[1]) assert (ica.exclude == [0, 1]) ica_raw = ica.get_sources(raw) assert (ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) # test filtering d1 = ica_raw._data[0].copy() ica_raw.filter(4, 20, fir_design='firwin2') assert_equal(ica_raw.info['lowpass'], 20.) assert_equal(ica_raw.info['highpass'], 4.) assert ((d1 != ica_raw._data[0]).any()) d1 = ica_raw._data[0].copy() ica_raw.notch_filter([10], trans_bandwidth=10, fir_design='firwin') assert ((d1 != ica_raw._data[0]).any()) ica.n_pca_components = 2 ica.method = 'fake' ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert (ica.n_pca_components == ica_read.n_pca_components) assert_equal(ica.method, ica_read.method) assert_equal(ica.labels_, ica_read.labels_) # check type consistency attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ ' 'pca_explained_variance_ pre_whitener_') def f(x, y): return getattr(x, y).dtype for attr in attrs.split(): assert_equal(f(ica_read, attr), f(ica, attr)) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_', 'pca_mean_', 'pca_explained_variance_', 'pre_whitener_']: assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr)) assert (ica.ch_names == ica_read.ch_names) assert (isinstance(ica_read.info, Info)) sources = ica.get_sources(raw)[:, :][0] sources2 = ica_read.get_sources(raw)[:, :][0] assert_array_almost_equal(sources, sources2) _raw1 = ica.apply(raw, exclude=[1]) _raw2 = ica_read.apply(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check score funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(raw, target='EOG 061', score_func=func, start=0, stop=10) assert (ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(raw, start=0, stop=50, score_func=stats.skew) # check exception handling pytest.raises(ValueError, ica.score_sources, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # variance, kurtosis params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) # Make sure detect_artifacts marks the right components. # For int criterion, the doc says "E.g. range(2) would return the two # sources with the highest score". Assert that's what it does. # Only test for skew, since it's always the same code. ica.exclude = [] ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=None, eog_ch=None, skew_criterion=0, var_criterion=None, kurt_criterion=None) assert np.abs(scores[ica.exclude]) == np.max(np.abs(scores)) evoked = epochs.average() evoked_data = evoked.data.copy() raw_data = raw[:][0].copy() epochs_data = epochs.get_data().copy() with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_ecg(raw, method='ctps') assert_equal(len(scores), ica.n_components_) with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_ecg(raw, method='correlation') assert_equal(len(scores), ica.n_components_) with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(epochs, method='ctps') assert_equal(len(scores), ica.n_components_) pytest.raises(ValueError, ica.find_bads_ecg, epochs.average(), method='ctps') pytest.raises(ValueError, ica.find_bads_ecg, raw, method='crazy-coupling') with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) raw.info['chs'][raw.ch_names.index('EOG 061') - 1]['kind'] = 202 with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_eog(raw) assert (isinstance(scores, list)) assert_equal(len(scores[0]), ica.n_components_) idx, scores = ica.find_bads_eog(evoked, ch_name='MEG 1441') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(evoked, method='correlation') assert_equal(len(scores), ica.n_components_) assert_array_equal(raw_data, raw[:][0]) assert_array_equal(epochs_data, epochs.get_data()) assert_array_equal(evoked_data, evoked.data) # check score funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(epochs_eog, target='EOG 061', score_func=func) assert (ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(epochs, score_func=stats.skew) # check exception handling pytest.raises(ValueError, ica.score_sources, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.score_sources(raw, target='MEG 1531', score_func='pearsonr') with pytest.warns(RuntimeWarning, match='longer'): ecg_events = ica_find_ecg_events( raw, sources[np.abs(ecg_scores).argmax()]) assert (ecg_events.ndim == 2) # eog functionality eog_scores = ica.score_sources(raw, target='EOG 061', score_func='pearsonr') with pytest.warns(RuntimeWarning, match='longer'): eog_events = ica_find_eog_events( raw, sources[np.abs(eog_scores).argmax()]) assert (eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.get_sources(raw, start=0, stop=100) assert (ica_raw.last_samp - ica_raw.first_samp == 100) assert_equal(len(ica_raw._filenames), 1) # API consistency ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert (ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif') ica.n_components = np.int32(ica.n_components) ica_raw.save(test_ica_fname, overwrite=True) ica_raw2 = read_raw_fif(test_ica_fname, preload=True) assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.get_sources(epochs) assert (ica_epochs.events.shape == epochs.events.shape) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert (ica.n_components_ == len(ica_chans)) assert (ica.n_components_ == ica_epochs.get_data().shape[1]) assert (ica_epochs._raw is None) assert (ica_epochs.preload is True) # test float n pca components ica.pca_explained_variance_ = np.array([0.2] * 5) ica.n_components_ = 0 for ncomps, expected in [[0.3, 1], [0.9, 4], [1, 1]]: ncomps_ = ica._check_n_pca_components(ncomps) assert (ncomps_ == expected) ica = ICA(method=method) with pytest.warns(None): # sometimes does not converge ica.fit(raw, picks=picks[:5]) with pytest.warns(RuntimeWarning, match='longer'): ica.find_bads_ecg(raw) ica.find_bads_eog(epochs, ch_name='MEG 0121') assert_array_equal(raw_data, raw[:][0]) raw.drop_channels(['MEG 0122']) pytest.raises(RuntimeError, ica.find_bads_eog, raw) with pytest.warns(RuntimeWarning, match='longer'): pytest.raises(RuntimeError, ica.find_bads_ecg, raw)
def remove_eyeblinks_and_heartbeat(raw, subject, figdir, events, eventid, rng): """ Find and repair eyeblink and heartbeat artifacts in the data. Data should be filtered. Importantly, ICA is fitted on artificially epoched data with reject criteria estimates via the autoreject package - this is done to reject high- amplitude artifacts to influence the ICA solution. The ICA fit is then applied to the raw data. :param raw: Raw data :param subject: str, subject identifier, e.g., '001' :param figdir: :param rng: random state instance """ # prior to an ICA, it is recommended to high-pass filter the data # as low frequency artifacts can alter the ICA solution. We fit the ICA # to high-pass filtered (1Hz) data, and apply it to non-highpass-filtered # data logging.info("Applying a temporary high-pass filtering prior to ICA") filt_raw = raw.copy() filt_raw.load_data().filter(l_freq=1., h_freq=None) # evoked eyeblinks and heartbeats for diagnostic plots eog_evoked = create_eog_epochs(filt_raw).average() eog_evoked.apply_baseline(baseline=(None, -0.2)) if subject == '008': # subject 008's ECG channel is flat. It will not find any heartbeats by # default. We let it estimate heartbeat from magnetometers. For this, # we'll drop the ECG channel filt_raw.drop_channels('ECG003') ecg_evoked = create_ecg_epochs(filt_raw).average() ecg_evoked.apply_baseline(baseline=(None, -0.2)) # make sure that we actually found sensible artifacts here eog_fig = eog_evoked.plot_joint() for i, fig in enumerate(eog_fig): fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"evoked-artifact_eog_sub-{subject}_{i}.png", ]) fig.savefig(fname) ecg_fig = ecg_evoked.plot_joint() for i, fig in enumerate(ecg_fig): fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"evoked-artifact_ecg_sub-{subject}_{i}.png", ]) fig.savefig(fname) # Chunk raw data into epochs to fit the ICA # No baseline correction as it would interfere with ICA. logging.info("Epoching filtered data") epochs = mne.Epochs(filt_raw, events, event_id=eventid, tmin=0, tmax=3, picks='meg', baseline=None) ## First, estimate rejection criteria for high-amplitude artifacts. This is ## done via autoreject #logging.info('Estimating bad epochs quick-and-dirty, to improve ICA') #ar = AutoReject(random_state=rng) # fit on first 200 epochs to save (a bit of) time #epochs.load_data() #ar.fit(epochs[:200]) #epochs_ar, reject_log = ar.transform(epochs, return_log=True) # run an ICA to capture heartbeat and eyeblink artifacts. # set a seed for reproducibility. # When left to figure out the component number by itself, it ends up with # about 80. I'm setting n_components to 45 to have a chance at checking them # by hand. # We fit it on a set of epochs excluding the initial bad epochs following # https://github.com/autoreject/autoreject/blob/dfbc64f49eddeda53c5868290a6792b5233843c6/examples/plot_autoreject_workflow.py logging.info('Fitting the ICA') ica = ICA(max_iter='auto', n_components=45, random_state=rng) ica.fit(epochs) #[~reject_log.bad_epochs]) logging.info("Searching for eyeblink and heartbeat artifacts in the data") # get ICA components for the given subject if subject == '008': eog_indices = [10] ecg_indices = [29] #eog_indices = ica_comps[subject]['eog'] #ecg_indices = ica_comps[subject]['ecg'] # An initially manual component detection did not reproduce after a software # update - for now, we have to do the automatic detection for all but sub 8 else: eog_indices, eog_scores = ica.find_bads_eog(filt_raw) ecg_indices, ecg_scores = ica.find_bads_ecg(filt_raw) logging.info(f"Identified the following EOG components: {eog_indices}") logging.info(f"Identified the following ECG components: {ecg_indices}") # visualize the components components = ica.plot_components() for i, fig in enumerate(components): fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"ica-components_sub-{subject}_{i}.png", ]) fig.savefig(fname) # visualize the time series of components and save it plt.rcParams['figure.figsize'] = 30, 20 comp_sources = ica.plot_sources(epochs) fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"ica-components_sources_sub-{subject}.png", ]) comp_sources.savefig(fname) # reset plotting params plt.rcParams['figure.figsize'] = plt.rcParamsDefault['figure.figsize'] # plot EOG components overlay_eog = ica.plot_overlay(eog_evoked, exclude=ica_comps[subject]['eog']) fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"ica-eog-components_over-avg-epochs_sub-{subject}.png", ]) overlay_eog.savefig(fname) # plot ECG components overlay_ecg = ica.plot_overlay(ecg_evoked, exclude=ica_comps[subject]['ecg']) fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"ica-ecg-components_over-avg-epochs_sub-{subject}.png", ]) overlay_ecg.savefig(fname) # plot EOG component properties figs = ica.plot_properties(filt_raw, picks=eog_indices) for i, fig in enumerate(figs): fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"ica-property{i}_artifact-eog_sub-{subject}.png", ]) fig.savefig(fname) # plot ECG component properties figs = ica.plot_properties(filt_raw, picks=ecg_indices) for i, fig in enumerate(figs): fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"ica-property{i}_artifact-ecg_sub-{subject}.png", ]) fig.savefig(fname) # Set the indices to be excluded ica.exclude = eog_indices ica.exclude.extend(ecg_indices) # plot ICs applied to the averaged EOG epochs, with EOG matches highlighted sources = ica.plot_sources(eog_evoked) fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"ica-sources_artifact-eog_sub-{subject}.png", ]) sources.savefig(fname) # plot ICs applied to the averaged ECG epochs, with ECG matches highlighted sources = ica.plot_sources(ecg_evoked) fname = _construct_path([ Path(figdir), f"sub-{subject}", "meg", f"ica-sources_artifact-ecg_sub-{subject}.png", ]) sources.savefig(fname) # apply the ICA to the raw data logging.info('Applying ICA to the raw data.') raw.load_data() ica.apply(raw)
def preprocess_eeg(id_num, random_seed=None): # Set important variables bids_path = BIDSPath(id_num, task=task, datatype=datatype, root=bids_root) plot_path = os.path.join(plotdir, "sub_{0}".format(id_num)) if os.path.exists(plot_path): shutil.rmtree(plot_path) os.mkdir(plot_path) if not random_seed: random_seed = int(binascii.b2a_hex(os.urandom(4)), 16) random.seed(random_seed) id_info = {"id": id_num, "random_seed": random_seed} ### Load and prepare EEG data ############################################# header = "### Processing sub-{0} (seed: {1}) ###".format( id_num, random_seed) print("\n" + "#" * len(header)) print(header) print("#" * len(header) + "\n") # Load EEG data raw = read_raw_bids(bids_path, verbose=True) # Check if recording is complete complete = len(raw.annotations) >= 600 # Add a montage to the data montage_kind = "standard_1005" montage = mne.channels.make_standard_montage(montage_kind) mne.datasets.eegbci.standardize(raw) raw.set_montage(montage) # Extract some info eeg_index = mne.pick_types(raw.info, eeg=True, eog=False, meg=False) ch_names = raw.info["ch_names"] ch_names_eeg = list(np.asarray(ch_names)[eeg_index]) sample_rate = raw.info["sfreq"] # Make a copy of the data raw_copy = raw.copy() raw_copy.load_data() # Trim duplicated data (only needed for sub-005) annot = raw_copy.annotations file_starts = [a for a in annot if a['description'] == "file start"] if len(file_starts): duplicate_start = file_starts[0]['onset'] raw_copy.crop(tmax=duplicate_start) # Make backup of EOG and EMG channels to re-append after PREP raw_other = raw_copy.copy() raw_other.pick_types(eog=True, emg=True, stim=False) # Prepare copy of raw data for PREP raw_copy.pick_types(eeg=True) # Plot data prior to any processing if complete: save_psd_plot(id_num, "psd_0_raw", plot_path, raw_copy) save_channel_plot(id_num, "ch_0_raw", plot_path, raw_copy) ### Clean up events ####################################################### print("\n\n=== Processing Event Annotations... ===\n") event_names = [ "stim_on", "red_on", "trace_start", "trace_end", "accuracy_submit", "vividness_submit" ] doubled = [] wrong_label = [] new_onsets = [] new_durations = [] new_descriptions = [] # Find and flag any duplicate triggers annot = raw_copy.annotations trigger_count = len(annot) for i in range(1, trigger_count - 1): a = annot[i] on_last = i + 1 == trigger_count prev_trigger = annot[i - 1]['description'] next_onset = annot[i + 1]['onset'] if not on_last else a['onset'] + 100 # Determine whether duplicates are doubles or mislabeled if a['description'] == prev_trigger: if (next_onset - a['onset']) < 0.002: doubled.append(a) else: wrong_label.append(a) # Rename annotations to have meaningful names & fix duplicates for a in raw_copy.annotations: if a in doubled or a['description'] not in event_names: continue if a in wrong_label: index = event_names.index(a['description']) a['description'] = event_names[index + 1] new_onsets.append(a['onset']) new_durations.append(a['duration']) new_descriptions.append(a['description']) # Replace old annotations with new fixed ones if len(annot): new_annot = mne.Annotations( new_onsets, new_durations, new_descriptions, orig_time=raw_copy.annotations[0]['orig_time']) raw_copy.set_annotations(new_annot) # Check annotations to verify we have equal numbers of each orig_counts = Counter(annot.description) counts = Counter(raw_copy.annotations.description) print("Updated Annotation Counts:") for a in event_names: out = " - '{0}': {1} -> {2}" print(out.format(a, orig_counts[a], counts[a])) # Get info id_info['annot_doubled'] = len(doubled) id_info['annot_wrong'] = len(wrong_label) count_vals = [ n for n in counts.values() if n != counts['vividness_submit'] ] id_info['equal_triggers'] = all(x == count_vals[0] for x in count_vals) id_info['stim_on'] = counts['stim_on'] id_info['red_on'] = counts['red_on'] id_info['trace_start'] = counts['trace_start'] id_info['trace_end'] = counts['trace_end'] id_info['acc_submit'] = counts['accuracy_submit'] id_info['vivid_submit'] = counts['vividness_submit'] if not complete: remaining_info = { 'initial_bad': "NA", 'num_initial_bad': "NA", 'interpolated': "NA", 'num_interpolated': "NA", 'remaining_bad': "NA", 'num_remaining_bad': "NA" } id_info.update(remaining_info) e = "\n\n### Incomplete recording for sub-{0}, skipping... ###\n\n" print(e.format(id_num)) return id_info ### Run components of PREP manually ####################################### print("\n\n=== Performing CleanLine... ===") # Try to remove line noise using CleanLine approach linenoise = np.arange(60, sample_rate / 2, 60) EEG_raw = raw_copy.get_data() * 1e6 EEG_new = removeTrend(EEG_raw, sample_rate=raw.info["sfreq"]) EEG_clean = mne.filter.notch_filter( EEG_new, Fs=raw.info["sfreq"], freqs=linenoise, filter_length="10s", method="spectrum_fit", mt_bandwidth=2, p_value=0.01, ) EEG_final = EEG_raw - EEG_new + EEG_clean raw_copy._data = EEG_final * 1e-6 del linenoise, EEG_raw, EEG_new, EEG_clean, EEG_final # Plot data following cleanline save_psd_plot(id_num, "psd_1_cleanline", plot_path, raw_copy) save_channel_plot(id_num, "ch_1_cleanline", plot_path, raw_copy) # Perform robust re-referencing prep_params = {"ref_chs": ch_names_eeg, "reref_chs": ch_names_eeg} reference = Reference(raw_copy, prep_params, ransac=True, random_state=random_seed) print("\n\n=== Performing Robust Re-referencing... ===\n") reference.perform_reference() # If not interpolating bad channels, use pre-interpolation channel data if not interpolate_bads: reference.raw._data = reference.EEG_before_interpolation * 1e-6 reference.interpolated_channels = [] reference.still_noisy_channels = reference.bad_before_interpolation reference.raw.info["bads"] = reference.bad_before_interpolation # Plot data following robust re-reference save_psd_plot(id_num, "psd_2_reref", plot_path, reference.raw) save_channel_plot(id_num, "ch_2_reref", plot_path, reference.raw) # Re-append removed EMG/EOG/trigger channels raw_prepped = reference.raw.add_channels([raw_other]) # Get info initial_bad = reference.noisy_channels_original["bad_all"] id_info['initial_bad'] = " ".join(initial_bad) id_info['num_initial_bad'] = len(initial_bad) interpolated = reference.interpolated_channels id_info['interpolated'] = " ".join(interpolated) id_info['num_interpolated'] = len(interpolated) remaining_bad = reference.still_noisy_channels id_info['remaining_bad'] = " ".join(remaining_bad) id_info['num_remaining_bad'] = len(remaining_bad) # Print re-referencing info print("\nRe-Referencing Info:") print(" - Bad channels original: {0}".format(initial_bad)) if interpolate_bads: print(" - Bad channels after re-referencing: {0}".format(interpolated)) print(" - Bad channels after interpolation: {0}".format(remaining_bad)) else: print( " - Bad channels after re-referencing: {0}".format(remaining_bad)) # Check if too many channels were interpolated for the participant prop_interpolated = len( reference.interpolated_channels) / len(ch_names_eeg) e = "### NOTE: Too many interpolated channels for sub-{0} ({1}) ###" if max_interpolated < prop_interpolated: print("\n") print(e.format(id_num, len(reference.interpolated_channels))) print("\n") ### Filter data and apply ICA to remove blinks ############################ # Apply highpass & lowpass filters print("\n\n=== Applying Highpass & Lowpass Filters... ===") raw_prepped.filter(1.0, 50.0, fir_design='firwin') # Plot data following frequency filters save_psd_plot(id_num, "psd_3_filtered", plot_path, raw_prepped) save_channel_plot(id_num, "ch_3_filtered", plot_path, raw_prepped) # Perform ICA using EOG data on eye blinks print("\n\n=== Removing Blinks Using ICA... ===\n") ica = ICA(n_components=20, random_state=random_seed, method='picard') ica.fit(raw_prepped, decim=5) eog_indices, eog_scores = ica.find_bads_eog(raw_prepped) ica.exclude = eog_indices if not len(ica.exclude): err = " - Encountered an ICA error for sub-{0}, skipping for now..." print("\n") print(err.format(id_num)) print("\n") save_bad_fif(raw_prepped, id_num, ica_err_dir) return id_info # Plot ICA info & diagnostics before removing from signal save_ica_plots(id_num, plot_path, raw_prepped, ica, eog_scores) # Remove eye blink independent components based on ICA ica.apply(raw_prepped) # Plot data following ICA save_psd_plot(id_num, "psd_4_ica", plot_path, raw_prepped) save_channel_plot(id_num, "ch_4_ica", plot_path, raw_prepped) ### Compute Current Source Density (CSD) estimates ######################## if perform_csd: print("\n") print("=== Computing Current Source Density (CSD) Estimates... ===\n") raw_prepped = mne.preprocessing.compute_current_source_density( raw_prepped.drop_channels(remaining_bad)) # Plot data following CSD save_psd_plot(id_num, "psd_5_csd", plot_path, raw_prepped) save_channel_plot(id_num, "ch_5_csd", plot_path, raw_prepped) ### Write preprocessed data to new EDF #################################### if max_interpolated < prop_interpolated: if not os.path.isdir(noisy_bad_dir): os.makedirs(noisy_bad_dir) outpath = os.path.join(noisy_bad_dir, outfile_fmt.format(id_num)) else: outpath = os.path.join(outdir, outfile_fmt.format(id_num)) write_mne_edf(outpath, raw_prepped) print("\n\n### sub-{0} complete! ###\n\n".format(id_num)) return id_info
def run(self): eog = self.info['channel_info']['EOG'] misc = self.info['channel_info']['Misc'] stim = self.info['channel_info']['Stim'] try: ext_files = glob.glob(self.info['ext_file_folder'] + '/' + self.participant + '/*axis0.dat') except: pass tmin = self.t_epoch[0] tmax = self.t_epoch[1] raw = read_raw_edf(self.file, eog=eog, misc=misc) self.raw = cp.deepcopy(raw) raw.load_data() # marker detection (one marker continous trial) if self.info['marker_detection'] == True: starts = find_trialstart(raw, stim_channel=raw.ch_names[stim[0]], new_samplin_rate=self.sr_new) try: starts[1] = starts[0] + 30 * 200 except: starts = np.r_[starts, (starts[0] + 30 * 200)] events = np.zeros((len(starts), 3)) events[:, 0] = starts events[:, 2] = list(self.info['event_dict'].values()) events = events.astype(np.int) # event detection (one marker regular events) if self.info['event_detection'] == True: starts = find_trialstart(raw, stim_channel=raw.ch_names[stim[0]], new_samplin_rate=self.sr_new) events = force_events(ext_files, self.info['event_dict'], self.sr_new, self.info['trial_length'], self.info['trials'], starts[:len(self.info['event_dict'])]) if self.info['ICA'] == True: ica = ICA(method='fastica') if self.info['Autoreject'] == True: ar = AutoReject() ## EEG preprocessing options will applied if parameters are set in object #read montage try: montage = make_standard_montage(self.montage) raw.set_montage(montage) except: pass #resampling try: raw.resample(sfreq=self.sr_new) except: pass #rereferencing try: raw, _ = mne.set_eeg_reference(raw, ref_channels=['EXG5', 'EXG6']) except: pass #filter try: low = self.filter_freqs[0] high = self.filter_freqs[1] raw.filter(low, high, fir_design='firwin') except: pass # occular correction try: ica.fit(raw) ica.exclude = [] eog_indices, eog_scores = ica.find_bads_eog(raw) ica.exclude = eog_indices ica.apply(raw) self.ica = ica except: pass picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') event_id = self.info['event_dict'] epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, baseline=None, preload=True, picks=picks) #epoch rejection try: epochs = epochs.drop(indices=self.bads) except: pass try: epochs, self.autoreject_log = ar.fit_transform(epochs, return_log=True) except: pass bads = np.asarray( [l == ['USER'] or l == ['AUTOREJECT'] for l in epochs.drop_log]) self.bads = np.where(bads == True) self.epochs = epochs return (self)
# estimate average artifact ecg_evoked = ecg_epochs.average() fig = ica.plot_sources(ecg_evoked, exclude=ecg_inds) # plot ECG sources + selection fig.savefig(img_folder + '/ica_ecg_evoked_sources.png') fig = ica.plot_overlay(ecg_evoked, exclude=ecg_inds) # plot ECG cleaning fig.savefig(img_folder + '/ica_ecg_evoked_overlay.png') #eog_evoked = create_eog_epochs(raw, tmin=-.5, tmax=.5, picks=picks).average() #fig = ica.plot_sources(eog_evoked, exclude=eog_inds) # plot EOG sources + selection #fig.savefig(img_folder + '/ica_eog_evoked_sources.png') #fig = ica.plot_overlay(eog_evoked, exclude=eog_inds) # plot EOG cleaning #fig.savefig(img_folder + '/ica_eog_evoked_overlay.png') tmp=ica.exclude ica.exclude = [] veog_evoked = create_eog_epochs(raw, ch_name='EOG001', tmin=-.5, tmax=.5, picks=picks).average() fig = ica.plot_sources(veog_evoked, exclude=veog_inds) # plot EOG sources + selection fig.savefig(img_folder + '/ica_veog_evoked_sources_veog_inds.png') fig = ica.plot_overlay(veog_evoked, exclude=veog_inds) # plot EOG cleaning fig.savefig(img_folder + '/ica_veog_evoked_overlay_veog_inds.png') fig = ica.plot_sources(veog_evoked, exclude=heog_inds) # plot EOG sources + selection fig.savefig(img_folder + '/ica_veog_evoked_sources_heog_inds.png') fig = ica.plot_overlay(veog_evoked, exclude=heog_inds) # plot EOG cleaning fig.savefig(img_folder + '/ica_veog_evoked_overlay_heog_inds.png') fig = ica.plot_sources(veog_evoked, exclude=eog_inds) # plot EOG sources + selection fig.savefig(img_folder + '/ica_veog_evoked_sources_eog_inds.png') fig = ica.plot_overlay(veog_evoked, exclude=eog_inds) # plot EOG cleaning fig.savefig(img_folder + '/ica_veog_evoked_overlay_eog_inds.png') heog_evoked = create_eog_epochs(raw, ch_name='EOG003', tmin=-.5, tmax=.5, picks=picks).average()
json.dump(json_info, outfile, indent=4) del json_info, json_file # Estimate ICA ica = ICA(method='picard', max_iter=1000, random_state=97, fit_params=dict(ortho=True, extended=True), verbose=True) ica.fit(epochs) # Save ICA ica_file = deriv_path / f'{sub}_task-{task}_ref-FCz_desc-ica_ica.fif.gz' ica.save(ica_file) # Find EOG artifacts eog_inds, eog_scores = ica.find_bads_eog(raw) ica.exclude = eog_inds eog_ica_plot = ica.plot_scores(eog_scores, labels=['VEOG', 'HEOG']) eog_ica_file = fig_path / f'{sub}_task-{task}_ic_eog_scores.png' eog_ica_plot.savefig(eog_ica_file, dpi=600) plt.close(eog_ica_plot) # Plot all component properties ica.plot_components(inst=epochs, reject=None, psd_args=dict(fmax=70)) ica.exclude.sort() ica.save(ica_file) print(f'ICs Flagged for Removal: {ica.exclude}') # Make a JSON json_info = { 'Description': 'ICA components',
def test_ica_additional(): """Test additional functionality """ stop2 = 500 test_cov2 = deepcopy(test_cov) ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks[:5]) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') ica.decompose_raw(raw, picks=None, start=start, stop=stop2) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources_epochs, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources_epochs(epochs) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = [0] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) # test pick merge -- add components ica.pick_sources_raw(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) # -- only as arg ica.exclude = [] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) # -- remove duplicates ica.exclude += [1] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) ica_raw = ica.sources_as_raw(raw) assert_true(ica.exclude == [ica.ch_names.index(e) for e in ica_raw.info['bads']]) ica.n_pca_components = 2 ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.ch_names == ica_read.ch_names) assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_, rtol=1e-16, atol=1e-32)) assert_array_equal(ica.pca_components_, ica_read.pca_components_) assert_array_equal(ica.pca_mean_, ica_read.pca_mean_) assert_array_equal(ica.pca_explained_variance_, ica_read.pca_explained_variance_) assert_array_equal(ica._pre_whitener, ica_read._pre_whitener) # assert_raises(RuntimeError, ica_read.decompose_raw, raw) sources = ica.get_sources_raw(raw) sources2 = ica_read.get_sources_raw(raw) assert_array_almost_equal(sources, sources2) _raw1 = ica.pick_sources_raw(raw, exclude=[1]) _raw2 = ica_read.pick_sources_raw(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # score funcs raw, with catch since "ties preclude exact" warning # XXX this should be fixed by a future PR... with warnings.catch_warnings(True) as w: sfunc_test = [ica.find_sources_raw(raw, target='EOG 061', score_func=n, start=0, stop=10) for n, f in score_funcs.items()] # score funcs raw # check lenght of scores [assert_true(ica.n_components_ == len(scores)) for scores in sfunc_test] # check univariate stats scores = ica.find_sources_raw(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_raw, raw, target=np.arange(1)) ## score funcs epochs ## # check lenght of scores # XXX this needs to be fixed, some of the score funcs don't seem to be # suited for the testing data. with warnings.catch_warnings(True) as w: sfunc_test = [ica.find_sources_epochs(epochs_eog, target='EOG 061', score_func=n) for n, f in score_funcs.items()] # check lenght of scores [assert_true(ica.n_components_ == len(scores)) for scores in sfunc_test] # check univariat stats scores = ica.find_sources_epochs(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_epochs, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.find_sources_raw(raw, target='MEG 1531', score_func='pearsonr') ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.find_sources_raw(raw, target='EOG 061', score_func='pearsonr') eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.sources_as_raw(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test_ica.fif') ica_raw.save(test_ica_fname) ica_raw2 = fiff.Raw(test_ica_fname, preload=True) assert_array_almost_equal(ica_raw._data, ica_raw2._data) ica_raw2.close() os.remove(test_ica_fname) # regression test for plot method assert_raises(ValueError, ica.plot_sources_raw, raw, order=np.arange(50)) assert_raises(ValueError, ica.plot_sources_epochs, epochs, order=np.arange(50))
def compute_ica(raw, subject, n_components=0.99, picks=None, decim=None, reject=None, ecg_tmin=-0.5, ecg_tmax=0.5, eog_tmin=-0.5, eog_tmax=0.5, n_max_ecg=3, n_max_eog=1, n_max_ecg_epochs=200, show=True, img_scale=1.0, random_state=None, report=None, artifact_stats=None): """Run ICA in raw data Parameters ----------, raw : instance of Raw Raw measurements to be decomposed. subject : str The name of the subject. picks : array-like of int, shape(n_channels, ) | None Channels to be included. This selection remains throughout the initialized ICA solution. If None only good data channels are used. Defaults to None. n_components : int | float | None | 'rank' The number of components used for ICA decomposition. If int, it must be smaller then max_pca_components. If None, all PCA components will be used. If float between 0 and 1 components can will be selected by the cumulative percentage of explained variance. If 'rank', the number of components equals the rank estimate. Defaults to 0.99. decim : int | None Increment for selecting each nth time slice. If None, all samples within ``start`` and ``stop`` are used. Defalts to None. reject : dict | None Rejection parameters based on peak to peak amplitude. Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'. If reject is None then no rejection is done. You should use such parameters to reject big measurement artifacts and not EOG for example. It only applies if `inst` is of type Raw. Defaults to {'mag': 5e-12} ecg_tmin : float Start time before ECG event. Defaults to -0.5. ecg_tmax : float End time after ECG event. Defaults to 0.5. eog_tmin : float Start time before rog event. Defaults to -0.5. eog_tmax : float End time after rog event. Defaults to 0.5. n_max_ecg : int | None The maximum number of ECG components to exclude. Defaults to 3. n_max_eog : int | None The maximum number of EOG components to exclude. Defaults to 1. n_max_ecg_epochs : int The maximum number of ECG epochs to use for phase-consistency estimation. Defaults to 200. show : bool Show figure if True scale_img : float The scaling factor for the report. Defaults to 1.0. random_state : None | int | instance of np.random.RandomState np.random.RandomState to initialize the FastICA estimation. As the estimation is non-deterministic it can be useful to fix the seed to have reproducible results. Defaults to None. report : instance of Report | None The report object. If None, a new report will be generated. artifact_stats : None | dict A dict that contains info on amplitude ranges of artifacts and numbers of events, etc. by channel type. Returns ------- ica : instance of ICA The ICA solution. report : dict A dict with an html report ('html') and artifact statistics ('stats'). """ if report is None: report = Report(subject=subject, title='ICA preprocessing') if n_components == 'rank': n_components = raw.estimate_rank(picks=picks) ica = ICA(n_components=n_components, max_pca_components=None, random_state=random_state, max_iter=256) ica.fit(raw, picks=picks, decim=decim, reject=reject) comment = [] for ch in ('mag', 'grad', 'eeg'): if ch in ica: comment += [ch.upper()] if len(comment) > 0: comment = '+'.join(comment) + ' ' else: comment = '' topo_ch_type = 'mag' if 'GRAD' in comment and 'MAG' not in comment: topo_ch_type = 'grad' elif 'EEG' in comment: topo_ch_type = 'eeg' ########################################################################### # 2) identify bad components by analyzing latent sources. title = '%s related to %s artifacts (red) ({})'.format(subject) # generate ECG epochs use detection via phase statistics reject_ = {'mag': 5e-12, 'grad': 5000e-13, 'eeg': 300e-6} if reject is not None: reject_.update(reject) for ch_type in ['mag', 'grad', 'eeg']: if ch_type not in ica: reject_.pop(ch_type) picks_ = np.array([raw.ch_names.index(k) for k in ica.ch_names]) if 'eeg' in ica: if 'ecg' in raw: picks_ = np.append(picks_, pick_types(raw.info, meg=False, ecg=True)[0]) else: logger.info('There is no ECG channel, trying to guess ECG from ' 'magnetormeters') if artifact_stats is None: artifact_stats = dict() ecg_epochs = create_ecg_epochs(raw, tmin=ecg_tmin, tmax=ecg_tmax, keep_ecg=True, picks=picks_, reject=reject_) n_ecg_epochs_found = len(ecg_epochs.events) artifact_stats['ecg_n_events'] = n_ecg_epochs_found n_max_ecg_epochs = min(n_max_ecg_epochs, n_ecg_epochs_found) artifact_stats['ecg_n_used'] = n_max_ecg_epochs sel_ecg_epochs = np.arange(n_ecg_epochs_found) rng = np.random.RandomState(42) rng.shuffle(sel_ecg_epochs) ecg_ave = ecg_epochs.average() report.add_figs_to_section(ecg_ave.plot(), 'ECG-full', 'artifacts') ecg_epochs = ecg_epochs[sel_ecg_epochs[:n_max_ecg_epochs]] ecg_ave = ecg_epochs.average() report.add_figs_to_section(ecg_ave.plot(), 'ECG-used', 'artifacts') _put_artifact_range(artifact_stats, ecg_ave, kind='ecg') ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps') if len(ecg_inds) > 0: ecg_evoked = ecg_epochs.average() del ecg_epochs fig = ica.plot_scores(scores, exclude=ecg_inds, labels='ecg', title='', show=show) report.add_figs_to_section(fig, 'scores ({})'.format(subject), section=comment + 'ECG', scale=img_scale) current_exclude = [e for e in ica.exclude] # issue #2608 MNE fig = ica.plot_sources(raw, ecg_inds, exclude=ecg_inds, title=title % ('components', 'ecg'), show=show) report.add_figs_to_section(fig, 'sources ({})'.format(subject), section=comment + 'ECG', scale=img_scale) ica.exclude = current_exclude fig = ica.plot_components(ecg_inds, ch_type=topo_ch_type, title='', colorbar=True, show=show) report.add_figs_to_section(fig, title % ('sources', 'ecg'), section=comment + 'ECG', scale=img_scale) ica.exclude = current_exclude ecg_inds = ecg_inds[:n_max_ecg] ica.exclude += ecg_inds fig = ica.plot_sources(ecg_evoked, exclude=ecg_inds, show=show) report.add_figs_to_section(fig, 'evoked sources ({})'.format(subject), section=comment + 'ECG', scale=img_scale) fig = ica.plot_overlay(ecg_evoked, exclude=ecg_inds, show=show) report.add_figs_to_section(fig, 'rejection overlay ({})'.format(subject), section=comment + 'ECG', scale=img_scale) # detect EOG by correlation picks_eog = np.concatenate( [picks_, pick_types(raw.info, meg=False, eeg=False, ecg=False, eog=True)]) eog_epochs = create_eog_epochs(raw, tmin=eog_tmin, tmax=eog_tmax, picks=picks_eog, reject=reject_) artifact_stats['eog_n_events'] = len(eog_epochs.events) artifact_stats['eog_n_used'] = artifact_stats['eog_n_events'] eog_ave = eog_epochs.average() report.add_figs_to_section(eog_ave.plot(), 'EOG-used', 'artifacts') _put_artifact_range(artifact_stats, eog_ave, kind='eog') eog_inds = None if len(eog_epochs.events) > 0: eog_inds, scores = ica.find_bads_eog(eog_epochs) if eog_inds is not None and len(eog_epochs.events) > 0: fig = ica.plot_scores(scores, exclude=eog_inds, labels='eog', show=show, title='') report.add_figs_to_section(fig, 'scores ({})'.format(subject), section=comment + 'EOG', scale=img_scale) current_exclude = [e for e in ica.exclude] # issue #2608 MNE fig = ica.plot_sources(raw, eog_inds, exclude=ecg_inds, title=title % ('sources', 'eog'), show=show) report.add_figs_to_section(fig, 'sources', section=comment + 'EOG', scale=img_scale) ica.exclude = current_exclude fig = ica.plot_components(eog_inds, ch_type=topo_ch_type, title='', colorbar=True, show=show) report.add_figs_to_section(fig, title % ('components', 'eog'), section=comment + 'EOG', scale=img_scale) ica.exclude = current_exclude eog_inds = eog_inds[:n_max_eog] ica.exclude += eog_inds eog_evoked = eog_epochs.average() fig = ica.plot_sources(eog_evoked, exclude=eog_inds, show=show) report.add_figs_to_section( fig, 'evoked sources ({})'.format(subject), section=comment + 'EOG', scale=img_scale) fig = ica.plot_overlay(eog_evoked, exclude=eog_inds, show=show) report.add_figs_to_section( fig, 'rejection overlay({})'.format(subject), section=comment + 'EOG', scale=img_scale) else: del eog_epochs # check the amplitudes do not change if len(ica.exclude) > 0: fig = ica.plot_overlay(raw, show=show) # EOG artifacts remain html = _render_components_table(ica) report.add_htmls_to_section( html, captions='excluded components', section='ICA rejection summary (%s)' % ch_type) report.add_figs_to_section( fig, 'rejection overlay({})'.format(subject), section=comment + 'RAW', scale=img_scale) return ica, dict(html=report, stats=artifact_stats)
def ICA_pipeline(mne_array, regions, chans_to_plot=20, base_name="", exclude=None, skip_plots=False): """This is example code using mne.""" raw = mne_array if not skip_plots: # Plot raw signal raw.plot(n_channels=chans_to_plot, block=True, duration=25, show=True, clipping="transparent", title="Raw LFP Data from {}".format(base_name), remove_dc=False, scalings=dict(eeg=350e-6)) # Perform ICA using mne from mne.preprocessing import ICA filt_raw = raw.copy() filt_raw.load_data().filter(l_freq=1., h_freq=None) ica = ICA(method='fastica', random_state=97) # ica = ICA(method='picard', random_state=97) ica.fit(filt_raw) # ica.exclude = [4, 6, 12] raw.load_data() if exclude is None: # Plot raw ICAs print('Select channels to exclude using this plot...') ica.plot_sources(raw, block=False, stop=25, title='ICA from {}'.format(base_name)) print('Click topo to get more ICA properties') ica.plot_components(inst=raw) # Overlay ICA cleaned signal over raw. Seperate plot for each region. # TODO Add scroll bar or include window selection option. # cont = input("Plot region overlay? (y|n) \n") # if cont.strip().lower() == "y": # reg_grps = [] # for reg in set(regions): # temp_grp = [] # for ch in raw.info.ch_names: # if reg in ch: # temp_grp.append(ch) # reg_grps.append(temp_grp) # for grps in reg_grps: # ica.plot_overlay(raw, stop=int(30 * 250), title='{}'.format( # grps[0][:3]), picks=grps) else: # ICAs to exclude ica.exclude = exclude if not skip_plots: ica.plot_sources(raw, block=False, stop=25, title='ICA from {}'.format(base_name)) ica.plot_components(inst=raw) # Apply ICA exclusion reconst_raw = raw.copy() exclude_raw = raw.copy() print("ICAs excluded: ", ica.exclude) ica.apply(reconst_raw) if not skip_plots: # change exclude to all except chosen ICs all_ICs = list(range(ica.n_components_)) for i in ica.exclude: all_ICs.remove(i) ica.exclude = all_ICs ica.apply(exclude_raw) # Plot excluded ICAs exclude_raw.plot(block=True, show=True, clipping="transparent", duration=25, title="Excluded ICs from {}".format(base_name), remove_dc=False, scalings=dict(eeg=350e-6)) # Plot reconstructed signals w/o excluded ICAs reconst_raw.plot( block=True, show=True, clipping="transparent", duration=25, title="Reconstructed LFP Data from {}".format(base_name), remove_dc=False, scalings=dict(eeg=350e-6)) return reconst_raw
def test_ica_additional(): """Test additional ICA functionality """ stop2 = 500 raw = io.Raw(raw_fname, preload=True).crop(0, stop, False).crop(1.5) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') test_cov = read_cov(test_cov_name) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) # for testing eog functionality picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=True, exclude='bads') epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2, baseline=(None, 0), preload=True) test_cov2 = deepcopy(test_cov) ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) assert_true(ica.info is None) ica.decompose_raw(raw, picks[:5]) assert_true(isinstance(ica.info, Info)) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') ica.decompose_raw(raw, picks=None, start=start, stop=stop2) # test warnings on bad filenames with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz') ica.save(ica_badname) read_ica(ica_badname) assert_true(len(w) == 2) # test decim ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) raw_ = raw.copy() for _ in range(3): raw_.append(raw_) n_samples = raw_._data.shape[1] ica.decompose_raw(raw, picks=None, decim=3) assert_true(raw_._data.shape[1], n_samples) # test expl var ica = ICA(n_components=1.0, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks=None, decim=3) assert_true(ica.n_components_ == 4) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources_epochs, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4, n_pca_components=4) with warnings.catch_warnings(record=True): # ICA does not converge ica.decompose_raw(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources_epochs(epochs) assert_true(ica.mixing_matrix_.shape == (2, 2)) assert_true(ica.unmixing_matrix_.shape == (2, 2)) assert_true(ica.pca_components_.shape == (4, len(picks))) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = [0] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) # test pick merge -- add components ica.pick_sources_raw(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) # -- only as arg ica.exclude = [] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) # -- remove duplicates ica.exclude += [1] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) # test basic include ica.exclude = [] ica.pick_sources_raw(raw, include=[1]) ica_raw = ica.sources_as_raw(raw) assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) # test filtering d1 = ica_raw._data[0].copy() with warnings.catch_warnings(record=True): # dB warning ica_raw.filter(4, 20) assert_true((d1 != ica_raw._data[0]).any()) d1 = ica_raw._data[0].copy() with warnings.catch_warnings(record=True): # dB warning ica_raw.notch_filter([10]) assert_true((d1 != ica_raw._data[0]).any()) ica.n_pca_components = 2 ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) # check type consistency attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ ' 'pca_explained_variance_ _pre_whitener') f = lambda x, y: getattr(x, y).dtype for attr in attrs.split(): assert_equal(f(ica_read, attr), f(ica, attr)) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_', 'pca_mean_', 'pca_explained_variance_', '_pre_whitener']: assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr)) assert_true(ica.ch_names == ica_read.ch_names) assert_true(isinstance(ica_read.info, Info)) assert_raises(RuntimeError, ica_read.decompose_raw, raw) sources = ica.get_sources_raw(raw) sources2 = ica_read.get_sources_raw(raw) assert_array_almost_equal(sources, sources2) _raw1 = ica.pick_sources_raw(raw, exclude=[1]) _raw2 = ica_read.pick_sources_raw(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check scrore funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_raw(raw, target='EOG 061', score_func=func, start=0, stop=10) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_raw(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_raw, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) ## score funcs epochs ## # check score funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_epochs(epochs_eog, target='EOG 061', score_func=func) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_epochs(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_epochs, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.find_sources_raw(raw, target='MEG 1531', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.find_sources_raw(raw, target='EOG 061', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.sources_as_raw(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) assert_true(len(ica_raw._filenames) == 0) # API consistency ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif') ica.n_components = np.int32(ica.n_components) ica_raw.save(test_ica_fname, overwrite=True) ica_raw2 = io.Raw(test_ica_fname, preload=True) assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.sources_as_epochs(epochs) assert_true(ica_epochs.events.shape == epochs.events.shape) sources_epochs = ica.get_sources_epochs(epochs) assert_array_equal(ica_epochs.get_data(), sources_epochs) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) assert_true(ica.n_components_ == ica_epochs.get_data().shape[1]) assert_true(ica_epochs.raw is None) assert_true(ica_epochs.preload is True) # test float n pca components ica.pca_explained_variance_ = np.array([0.2] * 5) ica.n_components_ = 0 for ncomps, expected in [[0.3, 1], [0.9, 4], [1, 1]]: ncomps_ = _check_n_pca_components(ica, ncomps) assert_true(ncomps_ == expected)
def test_plot_ica_sources(raw_orig, mpl_backend): """Test plotting of ICA panel.""" raw = raw_orig.copy().crop(0, 1) picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2) ica.fit(raw, picks=ica_picks) ica.exclude = [1] fig = ica.plot_sources(raw) assert mpl_backend._get_n_figs() == 1 # change which component is in ICA.exclude (click data trace to remove # current one; click name to add other one) fig._redraw() # ToDo: This will be different methods in pyqtgraph x = fig.mne.traces[1].get_xdata()[5] y = fig.mne.traces[1].get_ydata()[5] fig._fake_click((x, y), xform='data') # exclude = [] _click_ch_name(fig, ch_index=0, button=1) # exclude = [0] fig._fake_keypress(fig.mne.close_key) fig._close_event() assert mpl_backend._get_n_figs() == 0 assert_array_equal(ica.exclude, [0]) # test when picks does not include ica.exclude. fig = ica.plot_sources(raw, picks=[1]) assert len(plt.get_fignums()) == 1 mpl_backend._close_all() # dtype can change int->np.int64 after load, test it explicitly ica.n_components_ = np.int64(ica.n_components_) # test clicks on y-label (need >2 secs for plot_properties() to work) long_raw = raw_orig.crop(0, 5) fig = ica.plot_sources(long_raw) assert len(plt.get_fignums()) == 1 fig._redraw() _click_ch_name(fig, ch_index=0, button=3) assert len(fig.mne.child_figs) == 1 assert len(plt.get_fignums()) == 2 # close child fig directly (workaround for mpl issue #18609) fig._fake_keypress('escape', fig=fig.mne.child_figs[0]) assert len(plt.get_fignums()) == 1 fig._fake_keypress(fig.mne.close_key) assert len(plt.get_fignums()) == 0 del long_raw # test with annotations orig_annot = raw.annotations raw.set_annotations(Annotations([0.2], [0.1], 'Test')) fig = ica.plot_sources(raw) assert len(fig.mne.ax_main.collections) == 1 assert len(fig.mne.ax_hscroll.collections) == 1 raw.set_annotations(orig_annot) # test error handling raw_ = raw.copy().load_data() raw_.drop_channels('MEG 0113') with pytest.raises(RuntimeError, match="Raw doesn't match fitted data"), \ pytest.warns(RuntimeWarning, match='could not be picked'): ica.plot_sources(inst=raw_) epochs_ = epochs.copy().load_data() epochs_.drop_channels('MEG 0113') with pytest.raises(RuntimeError, match="Epochs don't match fitted data"), \ pytest.warns(RuntimeWarning, match='could not be picked'): ica.plot_sources(inst=epochs_) del raw_ del epochs_ # test w/ epochs and evokeds ica.plot_sources(epochs) ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.exclude = [0] ica.plot_sources(evoked) # pretend find_bads_eog() yielded some results ica.labels_ = {'eog': [0], 'eog/0/crazy-channel': [0]} ica.plot_sources(evoked) # now with labels # pass an invalid inst with pytest.raises(ValueError, match='must be of Raw or Epochs type'): ica.plot_sources('meeow')
def run_preprocessing_eog(raw_eeg, tmin=0, tmax=60, remove_artefact=True, show=True): '''Function to remove occular artefact by removing the ICA component(s) that are closest to a reference channel (here Fp2) Parameters ---------- raw_eeg : Raw file tmin : default 0 tmax : default 60 remove_artefact : wether to remove the ICA component from raw (default True) show : show scores (default : true) Return ------ Return cleaned raw or original raw if remove_artefact = True or no matching components were found. ''' raw_inter = raw_eeg.copy().crop(tmin=tmin, tmax=tmax) filtered_raw = raw_inter.filter(l_freq=1., h_freq=40.) ica = ICA(n_components=raw_eeg.info.get('nchan') - 2, random_state=9) print(raw_eeg.info) ica.fit(filtered_raw, verbose=False) ica.exclude = [] # find which ICs match the EOG pattern eog_indices, eog_scores = ica.find_bads_eog(raw_inter, ch_name='Fp2', threshold=1.4, verbose=False) ica.exclude = eog_indices if show == True: ica.plot_sources(filtered_raw) ica.plot_components() # barplot of ICA component "EOG match" scores ica.plot_scores(eog_scores) #ica.plot_overlay(raw_inter) #ica.plot_properties(raw_inter) if eog_indices != []: print('matching ICA component found') # plot diagnostics #ica.plot_properties(filtered_raw, picks=eog_indices) # plot ICs applied to raw data, with EOG matches highlighted if show == True: ica.plot_sources(raw_inter) if remove_artefact == True: reconst_raw = filtered_raw.copy() ica.apply(reconst_raw) return reconst_raw else: return filtered_raw else: print('No matching ICA component') return filtered_raw
def test_ica_additional(): """Test additional functionality """ stop2 = 500 test_cov2 = deepcopy(test_cov) ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) assert_true(ica.info is None) ica.decompose_raw(raw, picks[:5]) assert_true(isinstance(ica.info, Info)) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') ica.decompose_raw(raw, picks=None, start=start, stop=stop2) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources_epochs, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'ica_test.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=3, max_pca_components=4, n_pca_components=4) ica.decompose_raw(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources_epochs(epochs) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = [0] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) # test pick merge -- add components ica.pick_sources_raw(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) # -- only as arg ica.exclude = [] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) # -- remove duplicates ica.exclude += [1] ica.pick_sources_raw(raw, exclude=[0, 1]) assert_true(ica.exclude == [0, 1]) ica_raw = ica.sources_as_raw(raw) assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) ica.n_pca_components = 2 ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.ch_names == ica_read.ch_names) assert_true(isinstance(ica_read.info, Info)) # XXX improve later assert_true(np.allclose(ica.mixing_matrix_, ica_read.mixing_matrix_, rtol=1e-16, atol=1e-32)) assert_array_equal(ica.pca_components_, ica_read.pca_components_) assert_array_equal(ica.pca_mean_, ica_read.pca_mean_) assert_array_equal(ica.pca_explained_variance_, ica_read.pca_explained_variance_) assert_array_equal(ica._pre_whitener, ica_read._pre_whitener) # assert_raises(RuntimeError, ica_read.decompose_raw, raw) sources = ica.get_sources_raw(raw) sources2 = ica_read.get_sources_raw(raw) assert_array_almost_equal(sources, sources2) _raw1 = ica.pick_sources_raw(raw, exclude=[1]) _raw2 = ica_read.pick_sources_raw(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check scrore funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_raw(raw, target='EOG 061', score_func=func, start=0, stop=10) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_raw(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_raw, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) ## score funcs epochs ## # check score funcs for name, func in score_funcs.items(): if name in score_funcs_unsuited: continue scores = ica.find_sources_epochs(epochs_eog, target='EOG 061', score_func=func) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.find_sources_epochs(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.find_sources_epochs, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.find_sources_raw(raw, target='MEG 1531', score_func='pearsonr') ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.find_sources_raw(raw, target='EOG 061', score_func='pearsonr') eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.sources_as_raw(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test_ica.fif') ica_raw.save(test_ica_fname) ica_raw2 = fiff.Raw(test_ica_fname, preload=True) assert_array_almost_equal(ica_raw._data, ica_raw2._data) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.sources_as_epochs(epochs) assert_true(ica_epochs.events.shape == epochs.events.shape) sources_epochs = ica.get_sources_epochs(epochs) assert_array_equal(ica_epochs.get_data(), sources_epochs) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) assert_true(ica.n_components_ == ica_epochs.get_data().shape[1]) assert_true(ica_epochs.raw is None) assert_true(ica_epochs.preload == True) # regression test for plot method assert_raises(ValueError, ica.plot_sources_raw, raw, order=np.arange(50)) assert_raises(ValueError, ica.plot_sources_epochs, epochs, order=np.arange(50))
def test_plot_ica_sources(): """Test plotting of ICA panel.""" raw = read_raw_fif(raw_fname).crop(0, 1).load_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2) ica.fit(raw, picks=ica_picks) ica.exclude = [1] fig = ica.plot_sources(raw) assert len(plt.get_fignums()) == 1 # change which component is in ICA.exclude (click data trace to remove # current one; click name to add other one) fig.canvas.draw() x = fig.mne.traces[1].get_xdata()[5] y = fig.mne.traces[1].get_ydata()[5] _fake_click(fig, fig.mne.ax_main, (x, y), xform='data') # exclude = [] _click_ch_name(fig, ch_index=0, button=1) # exclude = [0] fig.canvas.key_press_event(fig.mne.close_key) _close_event(fig) assert len(plt.get_fignums()) == 0 assert_array_equal(ica.exclude, [0]) # test when picks does not include ica.exclude. fig = ica.plot_sources(raw, picks=[1]) assert len(plt.get_fignums()) == 1 plt.close('all') # dtype can change int->np.int64 after load, test it explicitly ica.n_components_ = np.int64(ica.n_components_) # test clicks on y-label (need >2 secs for plot_properties() to work) long_raw = read_raw_fif(raw_fname).crop(0, 5).load_data() fig = ica.plot_sources(long_raw) assert len(plt.get_fignums()) == 1 fig.canvas.draw() _fake_click(fig, fig.mne.ax_main, (-0.1, 0), xform='data', button=3) assert len(fig.mne.child_figs) == 1 assert len(plt.get_fignums()) == 2 # close child fig directly (workaround for mpl issue #18609) fig.mne.child_figs[0].canvas.key_press_event('escape') assert len(plt.get_fignums()) == 1 fig.canvas.key_press_event(fig.mne.close_key) assert len(plt.get_fignums()) == 0 del long_raw # test with annotations orig_annot = raw.annotations raw.set_annotations(Annotations([0.2], [0.1], 'Test')) fig = ica.plot_sources(raw) assert len(fig.mne.ax_main.collections) == 1 assert len(fig.mne.ax_hscroll.collections) == 1 raw.set_annotations(orig_annot) # test error handling raw.info['bads'] = ['MEG 0113'] with pytest.raises(RuntimeError, match="Raw doesn't match fitted data"): ica.plot_sources(inst=raw) epochs.info['bads'] = ['MEG 0113'] with pytest.raises(RuntimeError, match="Epochs don't match fitted data"): ica.plot_sources(inst=epochs) epochs.info['bads'] = [] # test w/ epochs and evokeds ica.plot_sources(epochs) ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.exclude = [0] ica.plot_sources(evoked) ica.labels_ = dict(eog=[0]) ica.labels_['eog/0/crazy-channel'] = [0] ica.plot_sources(evoked) # now with labels with pytest.raises(ValueError, match='must be of Raw or Epochs type'): ica.plot_sources('meeow')
def preprocess_ICA_fif_to_ts(fif_file, ECG_ch_name, EoG_ch_name, l_freq, h_freq, down_sfreq, variance, is_sensor_space, data_type): import os import numpy as np import mne from mne.io import Raw from mne.preprocessing import ICA, read_ica from mne.preprocessing import create_ecg_epochs, create_eog_epochs from mne.report import Report from nipype.utils.filemanip import split_filename as split_f report = Report() subj_path, basename, ext = split_f(fif_file) (data_path, sbj_name) = os.path.split(subj_path) print data_path # Read raw # If None the compensation in the data is not modified. # If set to n, e.g. 3, apply gradient compensation of grade n as for # CTF systems (compensation=3) raw = Raw(fif_file, preload=True) # select sensors select_sensors = mne.pick_types(raw.info, meg=True, ref_meg=False, exclude='bads') picks_meeg = mne.pick_types(raw.info, meg=True, eeg=True, exclude='bads') # save electrode locations sens_loc = [raw.info['chs'][i]['loc'][:3] for i in select_sensors] sens_loc = np.array(sens_loc) channel_coords_file = os.path.abspath("correct_channel_coords.txt") print '*** ' + channel_coords_file + '***' np.savetxt(channel_coords_file, sens_loc, fmt='%s') # save electrode names sens_names = np.array([raw.ch_names[pos] for pos in select_sensors],dtype = "str") # AP 21032016 # channel_names_file = os.path.join(data_path, "correct_channel_names.txt") channel_names_file = os.path.abspath("correct_channel_names.txt") np.savetxt(channel_names_file,sens_names , fmt = '%s') ### filtering + downsampling raw.filter(l_freq=l_freq, h_freq=h_freq, picks=picks_meeg, method='iir', n_jobs=8) # raw.filter(l_freq = l_freq, h_freq = h_freq, picks = picks_meeg, # method='iir') # raw.resample(sfreq=down_sfreq, npad=0) ### 1) Fit ICA model using the FastICA algorithm # Other available choices are `infomax` or `extended-infomax` # We pass a float value between 0 and 1 to select n_components based on the # percentage of variance explained by the PCA components. ICA_title = 'Sources related to %s artifacts (red)' is_show = False # visualization reject = dict(mag=4e-12, grad=4000e-13) # check if we have an ICA, if yes, we load it ica_filename = os.path.join(subj_path,basename + "-ica.fif") if os.path.exists(ica_filename) is False: ica = ICA(n_components=variance, method='fastica', max_iter=500) # , max_iter=500 ica.fit(raw, picks=select_sensors, reject=reject) # decim = 3, has_ICA = False else: has_ICA = True print ica_filename + ' exists!!!' ica = read_ica(ica_filename) ica.exclude = [] # 2) identify bad components by analyzing latent sources. # generate ECG epochs use detection via phase statistics # if we just have exclude channels we jump these steps # if len(ica.exclude)==0: n_max_ecg = 3 n_max_eog = 2 # check if ECG_ch_name is in the raw channels if ECG_ch_name in raw.info['ch_names']: ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5, picks=select_sensors, ch_name=ECG_ch_name) # if not a synthetic ECG channel is created from cross channel average else: ecg_epochs = create_ecg_epochs(raw, tmin=-.5, tmax=.5, picks=select_sensors) # ICA for ECG artifact # threshold=0.25 come default ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps') print scores print '\n len ecg_inds *** ' + str(len(ecg_inds)) + '***\n' if len(ecg_inds) > 0: ecg_evoked = ecg_epochs.average() fig1 = ica.plot_scores(scores, exclude=ecg_inds, title=ICA_title % 'ecg', show=is_show) show_picks = np.abs(scores).argsort()[::-1][:5] # Pick the five largest scores and plot them # Plot estimated latent sources given the unmixing matrix. #ica.plot_sources(raw, show_picks, exclude=ecg_inds, title=ICA_title % 'ecg', show=is_show) t_start = 0 t_stop = 30 # take the fist 30s fig2 = ica.plot_sources(raw, show_picks, exclude=ecg_inds, title=ICA_title % 'ecg' + ' in 30s' ,start = t_start, stop = t_stop, show=is_show) # topoplot of unmixing matrix columns fig3 = ica.plot_components(show_picks, title=ICA_title % 'ecg', colorbar=True, show=is_show) ecg_inds = ecg_inds[:n_max_ecg] ica.exclude += ecg_inds fig4 = ica.plot_sources(ecg_evoked, exclude=ecg_inds, show=is_show) # plot ECG sources + selection fig5 = ica.plot_overlay(ecg_evoked, exclude=ecg_inds, show=is_show) # plot ECG cleaning fig = [fig1, fig2, fig3, fig4, fig5] report.add_figs_to_section(fig, captions=['Scores of ICs related to ECG', 'Time Series plots of ICs (ECG)', 'TopoMap of ICs (ECG)', 'Time-locked ECG sources', 'ECG overlay'], section = 'ICA - ECG') # check if EoG_ch_name is in the raw channels # if EoG_ch_name is empty if data_type is fif, ICA routine automatically looks for EEG61, EEG62 # otherwise if data_type is ds we jump this step if not EoG_ch_name and data_type=='ds': eog_inds = [] else: if EoG_ch_name in raw.info['ch_names']: ### ICA for eye blink artifact - detect EOG by correlation eog_inds, scores = ica.find_bads_eog(raw, ch_name = EoG_ch_name) else: eog_inds, scores = ica.find_bads_eog(raw) if len(eog_inds) > 0: fig6 = ica.plot_scores(scores, exclude=eog_inds, title=ICA_title % 'eog', show=is_show) report.add_figs_to_section(fig6, captions=['Scores of ICs related to EOG'], section = 'ICA - EOG') # check how many EoG ch we have rs = np.shape(scores) if len(rs)>1: rr = rs[0] show_picks = [np.abs(scores[i][:]).argsort()[::-1][:5] for i in range(rr)] for i in range(rr): fig7 = ica.plot_sources(raw, show_picks[i][:], exclude=eog_inds, start = raw.times[0], stop = raw.times[-1], title=ICA_title % 'eog',show=is_show) fig8 = ica.plot_components(show_picks[i][:], title=ICA_title % 'eog', colorbar=True, show=is_show) # ICA nel tempo fig = [fig7, fig8] report.add_figs_to_section(fig, captions=['Scores of ICs related to EOG', 'Time Series plots of ICs (EOG)'], section = 'ICA - EOG') else: show_picks = np.abs(scores).argsort()[::-1][:5] fig7 = ica.plot_sources(raw, show_picks, exclude=eog_inds, title=ICA_title % 'eog', show=is_show) fig8 = ica.plot_components(show_picks, title=ICA_title % 'eog', colorbar=True, show=is_show) fig = [fig7, fig8] report.add_figs_to_section(fig, captions=['Time Series plots of ICs (EOG)', 'TopoMap of ICs (EOG)',], section = 'ICA - EOG') eog_inds = eog_inds[:n_max_eog] ica.exclude += eog_inds if EoG_ch_name in raw.info['ch_names']: eog_evoked = create_eog_epochs(raw, tmin=-.5, tmax=.5, picks=select_sensors, ch_name=EoG_ch_name).average() else: eog_evoked = create_eog_epochs(raw, tmin=-.5, tmax=.5, picks=select_sensors).average() fig9 = ica.plot_sources(eog_evoked, exclude=eog_inds, show=is_show) # plot EOG sources + selection fig10 = ica.plot_overlay(eog_evoked, exclude=eog_inds, show=is_show) # plot EOG cleaning fig = [fig9, fig10] report.add_figs_to_section(fig, captions=['Time-locked EOG sources', 'EOG overlay'], section = 'ICA - EOG') fig11 = ica.plot_overlay(raw, show=is_show) report.add_figs_to_section(fig11, captions=['Signal'], section = 'Signal quality') ### plot all topographies and time seris of the ICA components n_ica_components = ica.mixing_matrix_.shape[1] n_topo = 10; n_fig = n_ica_components/n_topo; n_plot = n_ica_components%n_topo; print '*************** n_fig = ' + str(n_fig) + ' n_plot = ' + str(n_plot) + '********************' fig = [] t_start = 0 t_stop = None # 60 if we want to take the fist 60s for n in range(0,n_fig): fig_tmp = ica.plot_components(range(n_topo*n,n_topo*(n+1)),title='ICA components', show=is_show) fig.append(fig_tmp) fig_tmp = ica.plot_sources(raw, range(n_topo*n,n_topo*(n+1)), start = t_start, stop = t_stop, title='ICA components') fig.append(fig_tmp) # if n_plot > 0: # fig_tmp = ica.plot_components(range(n_fig*n_topo,n_ica_components), title='ICA components', show=is_show) # fig.append(fig_tmp) # fig_tmp = ica.plot_sources(raw, range(n_fig*n_topo,n_ica_components), # start = t_start, stop = t_stop, # title='ICA components') # fig.append(fig_tmp) # # for n in range(0, len(fig)): # report.add_figs_to_section(fig[n], captions=['TOPO'], section = 'ICA Topo Maps') if n_plot > 5: n_fig_l = n_plot//5 print '*************************** ' + str(n_fig_l) + ' *********************************' for n in range(0,n_fig_l): print range(n_fig*n_topo+5*n, n_fig*n_topo+5*(n+1)) fig_tmp = ica.plot_components(range(n_fig*n_topo+5*n, n_fig*n_topo+5*(n+1)),title='ICA components') fig.append(fig_tmp) fig_tmp = ica.plot_sources(raw, range(n_fig*n_topo+5*n, n_fig*n_topo+5*(n+1)), start = t_start, stop = t_stop, title='ICA components') fig.append(fig_tmp) print range(n_fig*n_topo+5*(n+1),n_ica_components) fig_tmp = ica.plot_components(range(n_fig*n_topo+5*(n+1),n_ica_components), title='ICA components') fig.append(fig_tmp) fig_tmp = ica.plot_sources(raw, range(n_fig*n_topo+5*(n+1),n_ica_components), start = t_start, stop = t_stop, title='ICA components') fig.append(fig_tmp) for n in range(0, len(fig)): report.add_figs_to_section(fig[n], captions=['TOPO'], section = 'ICA Topo Maps') report_filename = os.path.join(subj_path,basename + "-report.html") print '******* ' + report_filename report.save(report_filename, open_browser=False, overwrite=True) # 3) apply ICA to raw data and save solution and report # check the amplitudes do not change # raw_ica_file = os.path.abspath(basename[:i_raw] + 'ica-raw.fif') raw_ica_file = os.path.join(subj_path, basename + '-preproc-raw.fif') raw_ica = ica.apply(raw) raw_ica.resample(sfreq=down_sfreq, npad=0) raw_ica.save(raw_ica_file, overwrite=True) # save ICA solution print ica_filename if has_ICA is False: ica.save(ica_filename) # 4) save data data_noIca, times = raw[select_sensors, :] data, times = raw_ica[select_sensors, :] print data.shape print raw.info['sfreq'] ts_file = os.path.abspath(basename + "_ica.npy") np.save(ts_file, data) print '***** TS FILE ' + ts_file + '*****' if is_sensor_space: return ts_file, channel_coords_file, channel_names_file, raw.info['sfreq'] else: # return raw_ica, channel_coords_file, channel_names_file, raw.info['sfreq'] return raw_ica_file, channel_coords_file, channel_names_file, raw.info['sfreq']
def run_preprocessing_eog(raw_eeg, tmin=0, remove_artefact=True, show=False): ''' Remove EOG artefacts Parameters ---------- raw_eeg : mne raw file tmin : minimum time to consider (default = 0) remove_artefact : whether to remove artefacts once found (default = True) show : Whether to show plots (components, signal before and after ... ) Return ------ Clean raw file if remove artefact is true, original raw file otherwise ''' raw_inter = raw_eeg.copy().crop(tmin=tmin) filtered_raw = raw_inter.filter(l_freq=3., h_freq=40.) print(filtered_raw.annotations) ica = ICA(n_components=raw_eeg.info.get('nchan'), random_state=9) ica.fit(filtered_raw, verbose=False) ica.exclude = [] # find which ICs match the EOG pattern eog_indices, eog_scores = ica.find_bads_eog(raw_inter, threshold=1.6, ch_name='Fpz', verbose=False) eog_indices.append(3) #eog_indices.append(4) ica.exclude = eog_indices if show == True: ica.plot_sources(filtered_raw) ica.plot_components() # barplot of ICA component "EOG match" scores #ica.plot_scores(eog_scores) ica.plot_overlay(raw_inter) #ica.plot_properties(raw_inter) if eog_indices != []: print('matching ICA component found') # plot diagnostics #ica.plot_properties(filtered_raw, picks=eog_indices) # plot ICs applied to raw data, with EOG matches highlighted if show == True: ica.plot_sources(raw_inter) if remove_artefact == True: reconst_raw = filtered_raw.copy() ica.apply(reconst_raw) return reconst_raw.filter(3, 40) else: return filtered_raw else: print('No matching ICA component') return filtered_raw
raw = raw.filter(filt_l, filt_h) print("Finding events...") events = find_events(raw) # the output of this is a 3 x n_trial np array print("Epoching data...") epochs = Epochs(raw, events, tmin=tmin, tmax=tmax, decim=5, baseline=None) print("Creating ICA object...") # apply ICA to the conjoint data picks = pick_types(raw.info, meg=True, exclude='bads') ica = ICA(n_components=0.9, method='fastica', max_iter=300) print("Fitting epochs...") # get ica components ica.exclude = [] ica.fit(epochs, picks=picks) print("Saving ICA solution...") ica.save(ica_fname) # save solution #__________________________________________________________ subject = 'A0307' meg_dir = '/Users/ea84/Dropbox/shepard_sourceloc/%s/' % (subject) raw_fname = meg_dir + subject + '_shepard-raw.fif' ica_fname = meg_dir + subject + '_shepard_ica1-ica.fif' ica_raw_fname = meg_dir + subject + '_ica_shepard-raw.fif' # applied ica to raw # params filt_l = 1 # same as aquisition
ica.plot_sources(raw) ica.plot_components() # notify when done os.system('say "... I am ready for you Neil."') #%% Select components to exclude and zero them out rm_select = [0, 3, 8] # blinks ica.plot_overlay(raw, exclude=rm_select, picks='eeg') # indices chosen based on various plots above ica.exclude = rm_select # apply ICA # ica.apply() changes the Raw object in-place: ica.apply(raw) # plot raw data excluding ocular artifacts for quality check raw.plot() #%% Fit autoreject events = mne.make_fixed_length_events(raw, duration=tstep) epochs = mne.Epochs(raw, events, tmin=0.0, tmax=tstep,
def test_ica_additional(): """Test additional ICA functionality""" tempdir = _TempDir() stop2 = 500 raw = Raw(raw_fname).crop(1.5, stop, False) raw.load_data() picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') test_cov = read_cov(test_cov_name) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) # test if n_components=None works with warnings.catch_warnings(record=True): ica = ICA(n_components=None, max_pca_components=None, n_pca_components=None, random_state=0) ica.fit(epochs, picks=picks, decim=3) # for testing eog functionality picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=True, exclude='bads') epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2, baseline=(None, 0), preload=True) test_cov2 = test_cov.copy() ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) assert_true(ica.info is None) with warnings.catch_warnings(record=True): ica.fit(raw, picks[:5]) assert_true(isinstance(ica.info, Info)) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') with warnings.catch_warnings(record=True): ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2) # test corrmap ica2 = ica.copy() corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True, ch_type="mag") corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False) assert_true(ica.labels_["blinks"] == ica2.labels_["blinks"]) assert_true(0 in ica.labels_["blinks"]) plt.close('all') # test warnings on bad filenames with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz') ica.save(ica_badname) read_ica(ica_badname) assert_naming(w, 'test_ica.py', 2) # test decim ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) raw_ = raw.copy() for _ in range(3): raw_.append(raw_) n_samples = raw_._data.shape[1] with warnings.catch_warnings(record=True): ica.fit(raw, picks=None, decim=3) assert_true(raw_._data.shape[1], n_samples) # test expl var ica = ICA(n_components=1.0, max_pca_components=4, n_pca_components=4) with warnings.catch_warnings(record=True): ica.fit(raw, picks=None, decim=3) assert_true(ica.n_components_ == 4) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4, n_pca_components=4) with warnings.catch_warnings(record=True): # ICA does not converge ica.fit(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources(epochs).get_data() assert_true(ica.mixing_matrix_.shape == (2, 2)) assert_true(ica.unmixing_matrix_.shape == (2, 2)) assert_true(ica.pca_components_.shape == (4, len(picks))) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = [0] ica.labels_ = {'foo': [0]} ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) assert_equal(ica.labels_, ica_read.labels_) ica.exclude = [] ica.apply(raw, exclude=[1]) assert_true(ica.exclude == []) ica.exclude = [0, 1] ica.apply(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) ica_raw = ica.get_sources(raw) assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) # test filtering d1 = ica_raw._data[0].copy() with warnings.catch_warnings(record=True): # dB warning ica_raw.filter(4, 20) assert_true((d1 != ica_raw._data[0]).any()) d1 = ica_raw._data[0].copy() with warnings.catch_warnings(record=True): # dB warning ica_raw.notch_filter([10]) assert_true((d1 != ica_raw._data[0]).any()) ica.n_pca_components = 2 ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) # check type consistency attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ ' 'pca_explained_variance_ _pre_whitener') def f(x, y): return getattr(x, y).dtype for attr in attrs.split(): assert_equal(f(ica_read, attr), f(ica, attr)) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_', 'pca_mean_', 'pca_explained_variance_', '_pre_whitener']: assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr)) assert_true(ica.ch_names == ica_read.ch_names) assert_true(isinstance(ica_read.info, Info)) sources = ica.get_sources(raw)[:, :][0] sources2 = ica_read.get_sources(raw)[:, :][0] assert_array_almost_equal(sources, sources2) _raw1 = ica.apply(raw, exclude=[1]) _raw2 = ica_read.apply(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check scrore funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(raw, target='EOG 061', score_func=func, start=0, stop=10) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.score_sources, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) with warnings.catch_warnings(record=True): idx, scores = ica.find_bads_ecg(raw, method='ctps') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(raw, method='correlation') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(epochs, method='ctps') assert_equal(len(scores), ica.n_components_) assert_raises(ValueError, ica.find_bads_ecg, epochs.average(), method='ctps') assert_raises(ValueError, ica.find_bads_ecg, raw, method='crazy-coupling') idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) raw.info['chs'][raw.ch_names.index('EOG 061') - 1]['kind'] = 202 idx, scores = ica.find_bads_eog(raw) assert_true(isinstance(scores, list)) assert_equal(len(scores[0]), ica.n_components_) # check score funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(epochs_eog, target='EOG 061', score_func=func) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.score_sources, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.score_sources(raw, target='MEG 1531', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.score_sources(raw, target='EOG 061', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.get_sources(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) assert_true(len(ica_raw._filenames) == 0) # API consistency ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif') ica.n_components = np.int32(ica.n_components) ica_raw.save(test_ica_fname, overwrite=True) ica_raw2 = Raw(test_ica_fname, preload=True) assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.get_sources(epochs) assert_true(ica_epochs.events.shape == epochs.events.shape) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) assert_true(ica.n_components_ == ica_epochs.get_data().shape[1]) assert_true(ica_epochs._raw is None) assert_true(ica_epochs.preload is True) # test float n pca components ica.pca_explained_variance_ = np.array([0.2] * 5) ica.n_components_ = 0 for ncomps, expected in [[0.3, 1], [0.9, 4], [1, 1]]: ncomps_ = ica._check_n_pca_components(ncomps) assert_true(ncomps_ == expected)
print('Fit %d components (explaining at least %0.1f%% of the variance)' % (ica.n_components_, 100 * n_components)) # Find onsets of heart beats and blinks. Create epochs around them ecg_epochs = create_ecg_epochs(raw, tmin=-.3, tmax=.3, preload=False) eog_epochs = create_eog_epochs(raw, tmin=-.5, tmax=.5, preload=False) # Find ICA components that correlate with heart beats. ecg_epochs.decimate(5) ecg_epochs.load_data() ecg_epochs.apply_baseline((None, None)) ecg_inds, ecg_scores = ica.find_bads_ecg(ecg_epochs, method='ctps') ecg_scores = np.abs(ecg_scores) rank = np.argsort(ecg_scores)[::-1] rank = [r for r in rank if ecg_scores[r] > 0.05] ica.exclude = rank[:n_ecg_components] print(' Found %d ECG indices' % (len(ecg_inds),)) # Find ICA components that correlate with eye blinks eog_epochs.decimate(5) eog_epochs.load_data() eog_epochs.apply_baseline((None, None)) eog_inds, eog_scores = ica.find_bads_eog(eog_epochs) eog_scores = np.max(np.abs(eog_scores), axis=0) # Remove all components with a correlation > 0.1 to the EOG channels and that # have not already been flagged as ECG components rank = np.argsort(eog_scores)[::-1] rank = [r for r in rank if eog_scores[r] > 0.1 and r not in ecg_inds] ica.exclude += rank[:n_eog_components] print(' Found %d EOG indices' % (len(eog_inds),))