Example #1
0
def _compute_rank(p, subj, run_indices):
    """Compute rank of the data."""
    epochs_fnames, _ = get_epochs_evokeds_fnames(p, subj, p.analyses)
    _, fif_file = epochs_fnames
    epochs = read_epochs(fif_file)  # .crop(p.bmin, p.bmax)  maybe someday...?
    meg, eeg = 'meg' in epochs, 'eeg' in epochs
    rank = dict()
    epochs.apply_proj()
    if p.cov_rank_method == 'estimate_rank':
        # old way
        if meg:
            eps = epochs.copy().pick_types(meg=meg, eeg=False)
            eps = eps.get_data().transpose([1, 0, 2])
            eps = eps.reshape(len(eps), -1)
            if 'grad' in epochs and 'mag' in epochs:  # Neuromag
                key = 'meg'
            else:
                key = 'grad' if 'grad' in epochs else 'mag'
            rank[key] = estimate_rank(eps, tol=p.cov_rank_tol)
        if eeg:
            eps = epochs.copy().pick_types(meg=False, eeg=eeg)
            eps = eps.get_data().transpose([1, 0, 2])
            eps = eps.reshape(len(eps), -1)
            rank['eeg'] = estimate_rank(eps, tol=p.cov_rank_tol)
    else:
        assert p.cov_rank_method == 'compute_rank'
        # new way
        rank = compute_rank(epochs, tol=p.cov_rank_tol, tol_kind='relative')
    for k, v in rank.items():
        print(' : %s rank %2d' % (k.upper(), v), end='')
    return rank
Example #2
0
def test_estimate_rank():
    """Test rank estimation."""
    data = np.eye(10)
    assert_array_equal(
        estimate_rank(data, return_singular=True)[1], np.ones(10))
    data[0, 0] = 0
    assert estimate_rank(data) == 9
    pytest.raises(ValueError, estimate_rank, data, 'foo')
Example #3
0
def test_estimate_rank():
    """Test rank estimation."""
    data = np.eye(10)
    assert_array_equal(estimate_rank(data, return_singular=True)[1],
                       np.ones(10))
    data[0, 0] = 0
    assert estimate_rank(data) == 9
    pytest.raises(ValueError, estimate_rank, data, 'foo')
def check_rank_cov_matrix(cov_mat, epochs):
    """Check the covariance matrix and report rank and channel number."""
    ch_num = len(cov_mat.ch_names)
    rank_cov = estimate_rank(cov_mat['data'], tol='auto')
    cov_ok = ch_num - rank_cov
    cond_num = cond(cov_mat['data'])
    if cov_ok > 0 and cond_num > 10e15:
        # cond num: amazing is < 10e4, really shitty is > 10e12, horrible 10e19
        print_ok = 'WARNING! Bad cov matrix.'
    else:
        print_ok = 'ok.'

    print('%i trials, %i channels, cov matrix has rank %i and condition '
          'number %s: %s' % (len(epochs.events), ch_num, rank_cov,
                             '{:.2E}'.format(Decimal(cond_num)), print_ok))
Example #5
0
def _make_diagonal_noise_matrix(csd, reg):
    """Make a diagonal matrix suitable for using as a noise CSD.

    Starts with an identity matrix and scales it to the smallest singular value
    of the CSD matrix that is comfortably larger than 0.

    Parameters
    ----------
    csd : ndarray, shape (n_series, n_series)
        The data cross-spectral density (CSD) matrix.
    reg : float
        The regulariation parameter used when inverting the CSD matrix.

    Returns
    -------
    noise : ndarray, shape (n_series, n_series)
        A suitable noise cross-spectral density (CSD) matrix.
    """
    rank, s = estimate_rank(csd, tol='auto', norm=False, return_singular=True)
    last_singular_value = abs(s[rank - 1])
    ratio = max(abs(reg), last_singular_value)
    return np.eye(len(csd)) * ratio