def test_snapshot_brain_montage(backends_3d): """Test snapshot brain montage.""" from mne.viz import get_3d_backend if get_3d_backend() == 'pyvista': pytest.skip("This feature is not available yet on PyVista") info = read_info(evoked_fname) fig = plot_alignment(info, trans=None, subject='sample', subjects_dir=subjects_dir) xyz = np.vstack([ich['loc'][:3] for ich in info['chs']]) ch_names = [ich['ch_name'] for ich in info['chs']] xyz_dict = dict(zip(ch_names, xyz)) xyz_dict[info['chs'][0]['ch_name']] = [1, 2] # Set one ch to only 2 vals # Make sure wrong types are checked pytest.raises(TypeError, snapshot_brain_montage, fig, xyz) # All chs must have 3 position values pytest.raises(ValueError, snapshot_brain_montage, fig, xyz_dict) # Make sure we raise error if the figure has no scene pytest.raises(ValueError, snapshot_brain_montage, None, info)
def test_plot_sparse_source_estimates(backends_3d): """Test plotting of (sparse) source estimates.""" backend_name = get_3d_backend() sample_src = read_source_spaces(src_fname) # dense version vertices = [s['vertno'] for s in sample_src] n_time = 5 n_verts = sum(len(v) for v in vertices) stc_data = np.zeros((n_verts * n_time)) stc_size = stc_data.size stc_data[(np.random.rand(stc_size // 20) * stc_size).astype(int)] = \ np.random.RandomState(0).rand(stc_data.size // 20) stc_data.shape = (n_verts, n_time) stc = SourceEstimate(stc_data, vertices, 1, 1) colormap = 'mne_analyze' plot_source_estimates(stc, 'sample', colormap=colormap, background=(1, 1, 0), subjects_dir=subjects_dir, colorbar=True, clim='auto') pytest.raises(TypeError, plot_source_estimates, stc, 'sample', figure='foo', hemi='both', clim='auto', subjects_dir=subjects_dir) # now do sparse version vertices = sample_src[0]['vertno'] inds = [111, 333] stc_data = np.zeros((len(inds), n_time)) stc_data[0, 1] = 1. stc_data[1, 4] = 2. vertices = [vertices[inds], np.empty(0, dtype=np.int)] stc = SourceEstimate(stc_data, vertices, 1, 1) surf = plot_sparse_source_estimates(sample_src, stc, bgcolor=(1, 1, 1), opacity=0.5, high_resolution=False) if backend_name == 'mayavi': import mayavi # noqa: F401 analysis:ignore assert isinstance(surf, mayavi.modules.surface.Surface)
def test_plot_evoked_field(backends_3d): """Test plotting evoked field.""" backend_name = get_3d_backend() evoked = read_evokeds(evoked_fname, condition='Left Auditory', baseline=(-0.2, 0.0)) evoked = pick_channels_evoked(evoked, evoked.ch_names[::10]) # speed for t in ['meg', None]: with pytest.warns(RuntimeWarning, match='projection'): maps = make_field_map(evoked, trans_fname, subject='sample', subjects_dir=subjects_dir, n_jobs=1, ch_type=t) fig = evoked.plot_field(maps, time=0.1) if backend_name == 'mayavi': import mayavi # noqa: F401 analysis:ignore assert isinstance(fig, mayavi.core.scene.Scene)
def test_set_3d_backend_bad(monkeypatch, tmp_path): """Test that the error emitted when a bad backend name is used.""" match = "Allowed values are 'pyvistaqt' and 'notebook'" with pytest.raises(ValueError, match=match): set_3d_backend('invalid') # gh-9607 def fail(x): raise ModuleNotFoundError(x) monkeypatch.setattr('mne.viz.backends.renderer._reload_backend', fail) monkeypatch.setattr('mne.viz.backends.renderer.MNE_3D_BACKEND', None) match = 'Could not load any valid 3D.*\npyvistaqt: .*' assert get_3d_backend() is None with pytest.raises(RuntimeError, match=match): _get_renderer()
def test_snapshot_brain_montage(backends_3d): """Test snapshot brain montage.""" from mne.viz import get_3d_backend if get_3d_backend() == 'pyvista': pytest.skip("This feature is not available yet on PyVista") info = read_info(evoked_fname) fig = plot_alignment( info, trans=None, subject='sample', subjects_dir=subjects_dir) xyz = np.vstack([ich['loc'][:3] for ich in info['chs']]) ch_names = [ich['ch_name'] for ich in info['chs']] xyz_dict = dict(zip(ch_names, xyz)) xyz_dict[info['chs'][0]['ch_name']] = [1, 2] # Set one ch to only 2 vals # Make sure wrong types are checked pytest.raises(TypeError, snapshot_brain_montage, fig, xyz) # All chs must have 3 position values pytest.raises(ValueError, snapshot_brain_montage, fig, xyz_dict) # Make sure we raise error if the figure has no scene pytest.raises(ValueError, snapshot_brain_montage, None, info)
def test_plot_alignment(tmpdir, backends_3d): """Test plotting of -trans.fif files and MEG sensor layouts.""" backend_name = get_3d_backend() # generate fiducials file for testing tempdir = str(tmpdir) fiducials_path = op.join(tempdir, 'fiducials.fif') fid = [{ 'coord_frame': 5, 'ident': 1, 'kind': 1, 'r': [-0.08061612, -0.02908875, -0.04131077] }, { 'coord_frame': 5, 'ident': 2, 'kind': 1, 'r': [0.00146763, 0.08506715, -0.03483611] }, { 'coord_frame': 5, 'ident': 3, 'kind': 1, 'r': [0.08436285, -0.02850276, -0.04127743] }] write_dig(fiducials_path, fid, 5) if backend_name == 'mayavi': mlab = _import_mlab() evoked = read_evokeds(evoked_fname)[0] sample_src = read_source_spaces(src_fname) bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True, preload=False).info infos = dict( Neuromag=evoked.info, CTF=read_raw_ctf(ctf_fname).info, BTi=bti, KIT=read_raw_kit(sqd_fname).info, ) for system, info in infos.items(): meg = ['helmet', 'sensors'] if system == 'KIT': meg.append('ref') plot_alignment(info, trans_fname, subject='sample', subjects_dir=subjects_dir, meg=meg) if backend_name == 'mayavi': mlab.close(all=True) # KIT ref sensor coil def is defined if backend_name == 'mayavi': mlab.close(all=True) info = infos['Neuromag'] pytest.raises(TypeError, plot_alignment, 'foo', trans_fname, subject='sample', subjects_dir=subjects_dir) pytest.raises(OSError, plot_alignment, info, trans_fname, subject='sample', subjects_dir=subjects_dir, src='foo') pytest.raises(ValueError, plot_alignment, info, trans_fname, subject='fsaverage', subjects_dir=subjects_dir, src=sample_src) sample_src.plot(subjects_dir=subjects_dir, head=True, skull=True, brain='white') if backend_name == 'mayavi': mlab.close(all=True) # no-head version if backend_name == 'mayavi': mlab.close(all=True) # all coord frames pytest.raises(ValueError, plot_alignment, info) plot_alignment(info, surfaces=[]) for coord_frame in ('meg', 'head', 'mri'): plot_alignment(info, meg=['helmet', 'sensors'], dig=True, coord_frame=coord_frame, trans=trans_fname, subject='sample', mri_fiducials=fiducials_path, subjects_dir=subjects_dir, src=src_fname) if backend_name == 'mayavi': mlab.close(all=True) # EEG only with strange options evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True) evoked_eeg_ecog_seeg.info['projs'] = [] # "remove" avg proj evoked_eeg_ecog_seeg.set_channel_types({ 'EEG 001': 'ecog', 'EEG 002': 'seeg' }) with pytest.warns(RuntimeWarning, match='Cannot plot MEG'): plot_alignment(evoked_eeg_ecog_seeg.info, subject='sample', trans=trans_fname, subjects_dir=subjects_dir, surfaces=['white', 'outer_skin', 'outer_skull'], meg=['helmet', 'sensors'], eeg=['original', 'projected'], ecog=True, seeg=True) if backend_name == 'mayavi': mlab.close(all=True) sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto') bem_sol = read_bem_solution( op.join(subjects_dir, 'sample', 'bem', 'sample-1280-1280-1280-bem-sol.fif')) bem_surfs = read_bem_surfaces( op.join(subjects_dir, 'sample', 'bem', 'sample-1280-1280-1280-bem.fif')) sample_src[0]['coord_frame'] = 4 # hack for coverage plot_alignment( info, subject='sample', eeg='projected', meg='helmet', bem=sphere, dig=True, surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin']) plot_alignment(info, trans_fname, subject='sample', meg='helmet', subjects_dir=subjects_dir, eeg='projected', bem=sphere, surfaces=['head', 'brain'], src=sample_src) assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI for surf in bem_sol['surfs']) plot_alignment(info, trans_fname, subject='sample', meg=[], subjects_dir=subjects_dir, bem=bem_sol, eeg=True, surfaces=['head', 'inflated', 'outer_skull', 'inner_skull']) assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI for surf in bem_sol['surfs']) plot_alignment(info, trans_fname, subject='sample', meg=True, subjects_dir=subjects_dir, surfaces=['head', 'inner_skull'], bem=bem_surfs) sphere = make_sphere_model('auto', 'auto', evoked.info) src = setup_volume_source_space(sphere=sphere) plot_alignment( info, eeg='projected', meg='helmet', bem=sphere, src=src, dig=True, surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin']) sphere = make_sphere_model('auto', None, evoked.info) # one layer # no info is permitted fig = plot_alignment(trans=trans_fname, subject='sample', meg=False, coord_frame='mri', subjects_dir=subjects_dir, surfaces=['brain'], bem=sphere, show_axes=True) if backend_name == 'mayavi': import mayavi # noqa: F401 analysis:ignore assert isinstance(fig, mayavi.core.scene.Scene) # 3D coil with no defined draw (ConvexHull) info_cube = pick_info(info, [0]) info['dig'] = None info_cube['chs'][0]['coil_type'] = 9999 with pytest.raises(RuntimeError, match='coil definition not found'): plot_alignment(info_cube, meg='sensors', surfaces=()) coil_def_fname = op.join(tempdir, 'temp') with open(coil_def_fname, 'w') as fid: fid.write(coil_3d) with use_coil_def(coil_def_fname): plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True) # one layer bem with skull surfaces: pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, surfaces=['brain', 'head', 'inner_skull'], bem=sphere) # wrong eeg value: pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, eeg='foo') # wrong meg value: pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, meg='bar') # multiple brain surfaces: pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, surfaces=['white', 'pial']) pytest.raises(TypeError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, surfaces=[1]) pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, surfaces=['foo']) if backend_name == 'mayavi': mlab.close(all=True)
def test_plot_alignment(tmpdir, backends_3d): """Test plotting of -trans.fif files and MEG sensor layouts.""" from mne.viz.backends.renderer import _Renderer backend_name = get_3d_backend() # generate fiducials file for testing tempdir = str(tmpdir) fiducials_path = op.join(tempdir, 'fiducials.fif') fid = [{'coord_frame': 5, 'ident': 1, 'kind': 1, 'r': [-0.08061612, -0.02908875, -0.04131077]}, {'coord_frame': 5, 'ident': 2, 'kind': 1, 'r': [0.00146763, 0.08506715, -0.03483611]}, {'coord_frame': 5, 'ident': 3, 'kind': 1, 'r': [0.08436285, -0.02850276, -0.04127743]}] write_dig(fiducials_path, fid, 5) if backend_name == 'mayavi': mlab = _import_mlab() evoked = read_evokeds(evoked_fname)[0] sample_src = read_source_spaces(src_fname) bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True, preload=False).info infos = dict( Neuromag=evoked.info, CTF=read_raw_ctf(ctf_fname).info, BTi=bti, KIT=read_raw_kit(sqd_fname).info, ) for system, info in infos.items(): meg = ['helmet', 'sensors'] if system == 'KIT': meg.append('ref') fig = plot_alignment(info, trans_fname, subject='sample', subjects_dir=subjects_dir, meg=meg) renderer = _Renderer(fig=fig) renderer.close() # KIT ref sensor coil def is defined if backend_name == 'mayavi': mlab.close(all=True) info = infos['Neuromag'] pytest.raises(TypeError, plot_alignment, 'foo', trans_fname, subject='sample', subjects_dir=subjects_dir) pytest.raises(OSError, plot_alignment, info, trans_fname, subject='sample', subjects_dir=subjects_dir, src='foo') pytest.raises(ValueError, plot_alignment, info, trans_fname, subject='fsaverage', subjects_dir=subjects_dir, src=sample_src) sample_src.plot(subjects_dir=subjects_dir, head=True, skull=True, brain='white') if backend_name == 'mayavi': mlab.close(all=True) # no-head version if backend_name == 'mayavi': mlab.close(all=True) # all coord frames pytest.raises(ValueError, plot_alignment, info) plot_alignment(info, surfaces=[]) for coord_frame in ('meg', 'head', 'mri'): fig = plot_alignment(info, meg=['helmet', 'sensors'], dig=True, coord_frame=coord_frame, trans=trans_fname, subject='sample', mri_fiducials=fiducials_path, subjects_dir=subjects_dir, src=src_fname) renderer = _Renderer(fig=fig) renderer.close() # EEG only with strange options evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True) evoked_eeg_ecog_seeg.info['projs'] = [] # "remove" avg proj evoked_eeg_ecog_seeg.set_channel_types({'EEG 001': 'ecog', 'EEG 002': 'seeg'}) with pytest.warns(RuntimeWarning, match='Cannot plot MEG'): plot_alignment(evoked_eeg_ecog_seeg.info, subject='sample', trans=trans_fname, subjects_dir=subjects_dir, surfaces=['white', 'outer_skin', 'outer_skull'], meg=['helmet', 'sensors'], eeg=['original', 'projected'], ecog=True, seeg=True) if backend_name == 'mayavi': mlab.close(all=True) sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto') bem_sol = read_bem_solution(op.join(subjects_dir, 'sample', 'bem', 'sample-1280-1280-1280-bem-sol.fif')) bem_surfs = read_bem_surfaces(op.join(subjects_dir, 'sample', 'bem', 'sample-1280-1280-1280-bem.fif')) sample_src[0]['coord_frame'] = 4 # hack for coverage plot_alignment(info, subject='sample', eeg='projected', meg='helmet', bem=sphere, dig=True, surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin']) plot_alignment(info, trans_fname, subject='sample', meg='helmet', subjects_dir=subjects_dir, eeg='projected', bem=sphere, surfaces=['head', 'brain'], src=sample_src) assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI for surf in bem_sol['surfs']) plot_alignment(info, trans_fname, subject='sample', meg=[], subjects_dir=subjects_dir, bem=bem_sol, eeg=True, surfaces=['head', 'inflated', 'outer_skull', 'inner_skull']) assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI for surf in bem_sol['surfs']) plot_alignment(info, trans_fname, subject='sample', meg=True, subjects_dir=subjects_dir, surfaces=['head', 'inner_skull'], bem=bem_surfs) sphere = make_sphere_model('auto', 'auto', evoked.info) src = setup_volume_source_space(sphere=sphere) plot_alignment(info, eeg='projected', meg='helmet', bem=sphere, src=src, dig=True, surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin']) sphere = make_sphere_model('auto', None, evoked.info) # one layer # no info is permitted fig = plot_alignment(trans=trans_fname, subject='sample', meg=False, coord_frame='mri', subjects_dir=subjects_dir, surfaces=['brain'], bem=sphere, show_axes=True) if backend_name == 'mayavi': import mayavi # noqa: F401 analysis:ignore assert isinstance(fig, mayavi.core.scene.Scene) # 3D coil with no defined draw (ConvexHull) info_cube = pick_info(info, [0]) info['dig'] = None info_cube['chs'][0]['coil_type'] = 9999 with pytest.raises(RuntimeError, match='coil definition not found'): plot_alignment(info_cube, meg='sensors', surfaces=()) coil_def_fname = op.join(tempdir, 'temp') with open(coil_def_fname, 'w') as fid: fid.write(coil_3d) with use_coil_def(coil_def_fname): plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True) # one layer bem with skull surfaces: pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, surfaces=['brain', 'head', 'inner_skull'], bem=sphere) # wrong eeg value: pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, eeg='foo') # wrong meg value: pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, meg='bar') # multiple brain surfaces: pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, surfaces=['white', 'pial']) pytest.raises(TypeError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, surfaces=[1]) pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname, subject='sample', subjects_dir=subjects_dir, surfaces=['foo']) if backend_name == 'mayavi': mlab.close(all=True)