Example #1
0
def _read_events(p, subj, ridx, raw, picker=None):
    ridx = np.array(ridx)
    assert ridx.ndim == 1
    if picker == 'restrict':  # limit to events that will be processed
        ids = p.in_numbers
        picker = None
        print('    Events restricted to those in params.in_numbers')
    else:
        ids = None
    events = list()
    for fname in get_event_fnames(p, subj, ridx):
        # gracefully handle empty events (e.g., resting state)
        with open(fname, 'r') as fid:
            content = fid.read().strip()
        if not content:
            these_events = np.empty((0, 3), int)
        else:
            these_events = read_events(fname, include=ids)
        events.append(these_events)
    if len(events) == 1 and len(raw._first_samps) > 1:  # for split raw
        first_samps = raw._first_samps[:1]
        last_samps = raw._last_samps[-1:]
    else:
        first_samps = raw._first_samps
        last_samps = raw._last_samps
    events = concatenate_events(events, first_samps, last_samps)
    if picker:
        events = _pick_events(events, picker)
    if len(np.unique(events[:, 0])) != len(events):
        raise RuntimeError('Non-unique event samples found after '
                           'concatenation')
    # do time adjustment
    t_adj = int(np.round(-p.t_adjust * raw.info['sfreq']))
    events[:, 0] += t_adj
    return events
Example #2
0
def _read_events(p, subj, ridx, raw):
    ridx = np.array(ridx)
    assert ridx.ndim == 1
    events = list()
    for fname in get_event_fnames(p, subj, ridx):
        these_events = read_events(fname)
        if len(np.unique(these_events[:, 0])) != len(these_events):
            raise RuntimeError('Non-unique event samples found in %s' %
                               (fname, ))
        events.append(these_events)
    if len(events) == 1 and len(raw._first_samps) > 1:  # for split raw
        first_samps = raw._first_samps[:1]
        last_samps = raw._last_samps[-1:]
    else:
        first_samps = raw._first_samps
        last_samps = raw._last_samps
    events = concatenate_events(events, first_samps, last_samps)
    if len(np.unique(events[:, 0])) != len(events):
        raise RuntimeError('Non-unique event samples found after '
                           'concatenation')
    # do time adjustment
    t_adj = int(np.round(-p.t_adjust * raw.info['sfreq']))
    events[:, 0] += t_adj
    return events
            elif events[cnt, 2] == 5:
                filtered_events.append(np.array([events[cnt, 0], 0, 5]))
                event_order.append('STB')
            cnt += 1
        filtered_events = np.array(filtered_events)

        # we need to keep all events at this point because we'll need them
        # in the correct order in order to match with behavior

        # filtering raw to remove breathing artifacts and stuff we won't need
        # for evoked analysis. Do it here because mne_process_raw wipes out
        # events channel
        raw.filter(1, 100)

        if f > 0:
            all_events = mne.concatenate_events([all_events, filtered_events], [all_raw.first_samp, raw.first_samp], [all_raw.last_samp, raw.last_samp])
            all_raw = mne.concatenate_raws([all_raw, raw])
        else:
            all_raw = raw
            all_events = filtered_events

event_id = {'STG': 1, 'STI': 3, 'STB': 5}
picks = mne.pick_types(raw.info, meg=True, ref_meg=True)
epochs = mne.Epochs(all_raw, all_events, event_id, tmin, tmax,
                    baseline=(None, 0), proj=False, preload=True, picks=picks)

print subj
print epochs

# checking that we have at least 8 blocks of data
if np.sum(epochs.events[:, 2] == 1) < 352:
Example #4
0
def test_multiple_files():
    """Test loading multiple files simultaneously
    """
    # split file
    tempdir = _TempDir()
    raw = Raw(fif_fname).crop(0, 10)
    raw.load_data()
    raw.load_data()  # test no operation
    split_size = 3.  # in seconds
    sfreq = raw.info['sfreq']
    nsamp = (raw.last_samp - raw.first_samp)
    tmins = np.round(np.arange(0., nsamp, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp]))
    tmaxs /= sfreq
    tmins /= sfreq
    assert_equal(raw.n_times, len(raw.times))

    # going in reverse order so the last fname is the first file (need later)
    raws = [None] * len(tmins)
    for ri in range(len(tmins) - 1, -1, -1):
        fname = op.join(tempdir, 'test_raw_split-%d_raw.fif' % ri)
        raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri])
        raws[ri] = Raw(fname)
    events = [find_events(r, stim_channel='STI 014') for r in raws]
    last_samps = [r.last_samp for r in raws]
    first_samps = [r.first_samp for r in raws]

    # test concatenation of split file
    assert_raises(ValueError, concatenate_raws, raws, True, events[1:])
    all_raw_1, events1 = concatenate_raws(raws,
                                          preload=False,
                                          events_list=events)
    assert_equal(raw.first_samp, all_raw_1.first_samp)
    assert_equal(raw.last_samp, all_raw_1.last_samp)
    assert_allclose(raw[:, :][0], all_raw_1[:, :][0])
    raws[0] = Raw(fname)
    all_raw_2 = concatenate_raws(raws, preload=True)
    assert_allclose(raw[:, :][0], all_raw_2[:, :][0])

    # test proper event treatment for split files
    events2 = concatenate_events(events, first_samps, last_samps)
    events3 = find_events(all_raw_2, stim_channel='STI 014')
    assert_array_equal(events1, events2)
    assert_array_equal(events1, events3)

    # test various methods of combining files
    raw = Raw(fif_fname, preload=True)
    n_times = raw.n_times
    # make sure that all our data match
    times = list(range(0, 2 * n_times, 999))
    # add potentially problematic points
    times.extend([n_times - 1, n_times, 2 * n_times - 1])

    raw_combo0 = Raw([fif_fname, fif_fname], preload=True)
    _compare_combo(raw, raw_combo0, times, n_times)
    raw_combo = Raw([fif_fname, fif_fname], preload=False)
    _compare_combo(raw, raw_combo, times, n_times)
    raw_combo = Raw([fif_fname, fif_fname], preload='memmap8.dat')
    _compare_combo(raw, raw_combo, times, n_times)
    assert_raises(ValueError, Raw, [fif_fname, ctf_fname])
    assert_raises(ValueError, Raw, [fif_fname, fif_bad_marked_fname])
    assert_equal(raw[:, :][0].shape[1] * 2, raw_combo0[:, :][0].shape[1])
    assert_equal(raw_combo0[:, :][0].shape[1], raw_combo0.n_times)

    # with all data preloaded, result should be preloaded
    raw_combo = Raw(fif_fname, preload=True)
    raw_combo.append(Raw(fif_fname, preload=True))
    assert_true(raw_combo.preload is True)
    assert_equal(raw_combo.n_times, raw_combo._data.shape[1])
    _compare_combo(raw, raw_combo, times, n_times)

    # with any data not preloaded, don't set result as preloaded
    raw_combo = concatenate_raws(
        [Raw(fif_fname, preload=True),
         Raw(fif_fname, preload=False)])
    assert_true(raw_combo.preload is False)
    assert_array_equal(find_events(raw_combo, stim_channel='STI 014'),
                       find_events(raw_combo0, stim_channel='STI 014'))
    _compare_combo(raw, raw_combo, times, n_times)

    # user should be able to force data to be preloaded upon concat
    raw_combo = concatenate_raws(
        [Raw(fif_fname, preload=False),
         Raw(fif_fname, preload=True)],
        preload=True)
    assert_true(raw_combo.preload is True)
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws(
        [Raw(fif_fname, preload=False),
         Raw(fif_fname, preload=True)],
        preload='memmap3.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws(
        [Raw(fif_fname, preload=True),
         Raw(fif_fname, preload=True)],
        preload='memmap4.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws(
        [Raw(fif_fname, preload=False),
         Raw(fif_fname, preload=False)],
        preload='memmap5.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    # verify that combining raws with different projectors throws an exception
    raw.add_proj([], remove_existing=True)
    assert_raises(ValueError, raw.append, Raw(fif_fname, preload=True))

    # now test event treatment for concatenated raw files
    events = [
        find_events(raw, stim_channel='STI 014'),
        find_events(raw, stim_channel='STI 014')
    ]
    last_samps = [raw.last_samp, raw.last_samp]
    first_samps = [raw.first_samp, raw.first_samp]
    events = concatenate_events(events, first_samps, last_samps)
    events2 = find_events(raw_combo0, stim_channel='STI 014')
    assert_array_equal(events, events2)

    # check out the len method
    assert_equal(len(raw), raw.n_times)
    assert_equal(len(raw), raw.last_samp - raw.first_samp + 1)
Example #5
0
def test_multiple_files():
    """Test loading multiple files simultaneously
    """
    # split file
    raw = Raw(fif_fname, preload=True)
    split_size = 10.  # in seconds
    sfreq = raw.info['sfreq']
    nsamp = (raw.last_samp - raw.first_samp)
    tmins = np.round(np.arange(0., nsamp, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp]))
    tmaxs /= sfreq
    tmins /= sfreq

    # going in reverse order so the last fname is the first file (need later)
    raws = [None] * len(tmins)
    for ri in range(len(tmins) - 1, -1, -1):
        fname = op.join(tempdir, 'test_raw_split-%d_raw.fif' % ri)
        raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri])
        raws[ri] = Raw(fname)
    events = [find_events(r) for r in raws]
    last_samps = [r.last_samp for r in raws]
    first_samps = [r.first_samp for r in raws]

    # test concatenation of split file
    all_raw_1 = concatenate_raws(raws, preload=False)
    assert_true(raw.first_samp == all_raw_1.first_samp)
    assert_true(raw.last_samp == all_raw_1.last_samp)
    assert_array_almost_equal(raw[:, :][0], all_raw_1[:, :][0])
    raws[0] = Raw(fname)
    all_raw_2 = concatenate_raws(raws, preload=True)
    assert_array_almost_equal(raw[:, :][0], all_raw_2[:, :][0])

    # test proper event treatment for split files
    events = concatenate_events(events, first_samps, last_samps)
    events2 = find_events(all_raw_2)
    assert_array_equal(events, events2)

    # test various methods of combining files
    n_combos = 9
    raw_combos = [None] * n_combos

    raw = Raw(fif_fname, preload=True)
    raw_combos[0] = Raw([fif_fname, fif_fname], preload=True)
    raw_combos[1] = Raw([fif_fname, fif_fname], preload=False)
    raw_combos[2] = Raw([fif_fname, fif_fname], preload='memmap8.dat')
    assert_raises(ValueError, Raw, [fif_fname, ctf_fname])
    assert_raises(ValueError, Raw, [fif_fname, fif_bad_marked_fname])
    n_times = len(raw._times)
    assert_true(raw[:, :][0].shape[1] * 2 == raw_combos[0][:, :][0].shape[1])
    assert_true(raw_combos[0][:, :][0].shape[1] == len(raw_combos[0]._times))

    # with all data preloaded, result should be preloaded
    raw_combos[3] = Raw(fif_fname, preload=True)
    raw_combos[3].append(Raw(fif_fname, preload=True))
    assert_true(raw_combos[0]._preloaded == True)

    # with any data not preloaded, don't set result as preloaded
    raw_combos[4] = concatenate_raws([Raw(fif_fname, preload=True),
                                      Raw(fif_fname, preload=False)])
    assert_true(raw_combos[1]._preloaded == False)
    assert_array_equal(find_events(raw_combos[4]), find_events(raw_combos[0]))

    # user should be able to force data to be preloaded upon concat
    raw_combos[5] = concatenate_raws([Raw(fif_fname, preload=False),
                                      Raw(fif_fname, preload=True)],
                                     preload=True)
    assert_true(raw_combos[2]._preloaded == True)

    raw_combos[6] = concatenate_raws([Raw(fif_fname, preload=False),
                                      Raw(fif_fname, preload=True)],
                                     preload='memmap3.dat')

    raw_combos[7] = concatenate_raws([Raw(fif_fname, preload=True),
                                      Raw(fif_fname, preload=True)],
                                     preload='memmap4.dat')

    raw_combos[8] = concatenate_raws([Raw(fif_fname, preload=False),
                                      Raw(fif_fname, preload=False)],
                                     preload='memmap5.dat')

    # make sure that all our data match
    times = range(0, 2 * n_times, 999)
    # add potentially problematic points
    times.extend([n_times - 1, n_times, 2 * n_times - 1])
    for ti in times:  # let's do a subset of points for speed
        orig = raw[:, ti % n_times][0]
        for raw_combo in raw_combos:
            # these are almost_equals because of possible dtype differences
            assert_array_almost_equal(orig, raw_combo[:, ti][0])

    # verify that combining raws with different projectors throws an exception
    raw.add_proj([], remove_existing=True)
    assert_raises(ValueError, raw.append, Raw(fif_fname, preload=True))

    # now test event treatment for concatenated raw files
    events = [find_events(raw), find_events(raw)]
    last_samps = [raw.last_samp, raw.last_samp]
    first_samps = [raw.first_samp, raw.first_samp]
    events = concatenate_events(events, first_samps, last_samps)
    events2 = find_events(raw_combos[0])
    assert_array_equal(events, events2)

    # check out the len method
    assert_true(len(raw) == raw.n_times)
    assert_true(len(raw) == raw.last_samp - raw.first_samp + 1)
Example #6
0
def test_multiple_files():
    """Test loading multiple files simultaneously
    """
    # split file
    raw = Raw(fif_fname, preload=True).crop(0, 10)
    split_size = 3.  # in seconds
    sfreq = raw.info['sfreq']
    nsamp = (raw.last_samp - raw.first_samp)
    tmins = np.round(np.arange(0., nsamp, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp]))
    tmaxs /= sfreq
    tmins /= sfreq
    assert_equal(raw.n_times, len(raw._times))

    # going in reverse order so the last fname is the first file (need later)
    raws = [None] * len(tmins)
    for ri in range(len(tmins) - 1, -1, -1):
        fname = op.join(tempdir, 'test_raw_split-%d_raw.fif' % ri)
        raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri])
        raws[ri] = Raw(fname)
    events = [find_events(r, stim_channel='STI 014') for r in raws]
    last_samps = [r.last_samp for r in raws]
    first_samps = [r.first_samp for r in raws]

    # test concatenation of split file
    all_raw_1 = concatenate_raws(raws, preload=False)
    assert_true(raw.first_samp == all_raw_1.first_samp)
    assert_true(raw.last_samp == all_raw_1.last_samp)
    assert_allclose(raw[:, :][0], all_raw_1[:, :][0])
    raws[0] = Raw(fname)
    all_raw_2 = concatenate_raws(raws, preload=True)
    assert_allclose(raw[:, :][0], all_raw_2[:, :][0])

    # test proper event treatment for split files
    events = concatenate_events(events, first_samps, last_samps)
    events2 = find_events(all_raw_2, stim_channel='STI 014')
    assert_array_equal(events, events2)

    # test various methods of combining files
    raw = Raw(fif_fname, preload=True)
    n_times = len(raw._times)
    # make sure that all our data match
    times = list(range(0, 2 * n_times, 999))
    # add potentially problematic points
    times.extend([n_times - 1, n_times, 2 * n_times - 1])

    raw_combo0 = Raw([fif_fname, fif_fname], preload=True)
    _compare_combo(raw, raw_combo0, times, n_times)
    raw_combo = Raw([fif_fname, fif_fname], preload=False)
    _compare_combo(raw, raw_combo, times, n_times)
    raw_combo = Raw([fif_fname, fif_fname], preload='memmap8.dat')
    _compare_combo(raw, raw_combo, times, n_times)
    assert_raises(ValueError, Raw, [fif_fname, ctf_fname])
    assert_raises(ValueError, Raw, [fif_fname, fif_bad_marked_fname])
    assert_true(raw[:, :][0].shape[1] * 2 == raw_combo0[:, :][0].shape[1])
    assert_true(raw_combo0[:, :][0].shape[1] == len(raw_combo0._times))

    # with all data preloaded, result should be preloaded
    raw_combo = Raw(fif_fname, preload=True)
    raw_combo.append(Raw(fif_fname, preload=True))
    assert_true(raw_combo._preloaded is True)
    assert_true(len(raw_combo._times) == raw_combo._data.shape[1])
    _compare_combo(raw, raw_combo, times, n_times)

    # with any data not preloaded, don't set result as preloaded
    raw_combo = concatenate_raws([Raw(fif_fname, preload=True),
                                  Raw(fif_fname, preload=False)])
    assert_true(raw_combo._preloaded is False)
    assert_array_equal(find_events(raw_combo, stim_channel='STI 014'),
                       find_events(raw_combo0, stim_channel='STI 014'))
    _compare_combo(raw, raw_combo, times, n_times)

    # user should be able to force data to be preloaded upon concat
    raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
                                  Raw(fif_fname, preload=True)],
                                 preload=True)
    assert_true(raw_combo._preloaded is True)
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
                                  Raw(fif_fname, preload=True)],
                                 preload='memmap3.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws([Raw(fif_fname, preload=True),
                                  Raw(fif_fname, preload=True)],
                                 preload='memmap4.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    raw_combo = concatenate_raws([Raw(fif_fname, preload=False),
                                  Raw(fif_fname, preload=False)],
                                 preload='memmap5.dat')
    _compare_combo(raw, raw_combo, times, n_times)

    # verify that combining raws with different projectors throws an exception
    raw.add_proj([], remove_existing=True)
    assert_raises(ValueError, raw.append, Raw(fif_fname, preload=True))

    # now test event treatment for concatenated raw files
    events = [find_events(raw, stim_channel='STI 014'),
              find_events(raw, stim_channel='STI 014')]
    last_samps = [raw.last_samp, raw.last_samp]
    first_samps = [raw.first_samp, raw.first_samp]
    events = concatenate_events(events, first_samps, last_samps)
    events2 = find_events(raw_combo0, stim_channel='STI 014')
    assert_array_equal(events, events2)

    # check out the len method
    assert_true(len(raw) == raw.n_times)
    assert_true(len(raw) == raw.last_samp - raw.first_samp + 1)
Example #7
0
def test_multiple_files():
    """Test loading multiple files simultaneously
    """
    # split file
    raw = Raw(fif_fname, preload=True)
    split_size = 10.  # in seconds
    sfreq = raw.info['sfreq']
    nsamp = (raw.last_samp - raw.first_samp)
    tmins = np.round(np.arange(0., nsamp, split_size * sfreq))
    tmaxs = np.concatenate((tmins[1:] - 1, [nsamp]))
    tmaxs /= sfreq
    tmins /= sfreq

    # going in reverse order so the last fname is the first file (need later)
    raws = [None] * len(tmins)
    for ri in range(len(tmins) - 1, -1, -1):
        fname = op.join(tempdir, 'test_raw_split-%d_raw.fif' % ri)
        raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri])
        raws[ri] = Raw(fname)
    events = [find_events(r, stim_channel='STI 014') for r in raws]
    last_samps = [r.last_samp for r in raws]
    first_samps = [r.first_samp for r in raws]

    # test concatenation of split file
    all_raw_1 = concatenate_raws(raws, preload=False)
    assert_true(raw.first_samp == all_raw_1.first_samp)
    assert_true(raw.last_samp == all_raw_1.last_samp)
    assert_allclose(raw[:, :][0], all_raw_1[:, :][0])
    raws[0] = Raw(fname)
    all_raw_2 = concatenate_raws(raws, preload=True)
    assert_allclose(raw[:, :][0], all_raw_2[:, :][0])

    # test proper event treatment for split files
    events = concatenate_events(events, first_samps, last_samps)
    events2 = find_events(all_raw_2, stim_channel='STI 014')
    assert_array_equal(events, events2)

    # test various methods of combining files
    n_combos = 9
    raw_combos = [None] * n_combos

    raw = Raw(fif_fname, preload=True)
    raw_combos[0] = Raw([fif_fname, fif_fname], preload=True)
    raw_combos[1] = Raw([fif_fname, fif_fname], preload=False)
    raw_combos[2] = Raw([fif_fname, fif_fname], preload='memmap8.dat')
    assert_raises(ValueError, Raw, [fif_fname, ctf_fname])
    assert_raises(ValueError, Raw, [fif_fname, fif_bad_marked_fname])
    n_times = len(raw._times)
    assert_true(raw[:, :][0].shape[1] * 2 == raw_combos[0][:, :][0].shape[1])
    assert_true(raw_combos[0][:, :][0].shape[1] == len(raw_combos[0]._times))

    # with all data preloaded, result should be preloaded
    raw_combos[3] = Raw(fif_fname, preload=True)
    raw_combos[3].append(Raw(fif_fname, preload=True))
    assert_true(raw_combos[0]._preloaded == True)
    assert_true(len(raw_combos[3]._times) == raw_combos[3]._data.shape[1])

    # with any data not preloaded, don't set result as preloaded
    raw_combos[4] = concatenate_raws(
        [Raw(fif_fname, preload=True),
         Raw(fif_fname, preload=False)])
    assert_true(raw_combos[1]._preloaded == False)
    assert_array_equal(find_events(raw_combos[4], stim_channel='STI 014'),
                       find_events(raw_combos[0], stim_channel='STI 014'))

    # user should be able to force data to be preloaded upon concat
    raw_combos[5] = concatenate_raws(
        [Raw(fif_fname, preload=False),
         Raw(fif_fname, preload=True)],
        preload=True)
    assert_true(raw_combos[2]._preloaded == True)

    raw_combos[6] = concatenate_raws(
        [Raw(fif_fname, preload=False),
         Raw(fif_fname, preload=True)],
        preload='memmap3.dat')

    raw_combos[7] = concatenate_raws(
        [Raw(fif_fname, preload=True),
         Raw(fif_fname, preload=True)],
        preload='memmap4.dat')

    raw_combos[8] = concatenate_raws(
        [Raw(fif_fname, preload=False),
         Raw(fif_fname, preload=False)],
        preload='memmap5.dat')

    # make sure that all our data match
    times = range(0, 2 * n_times, 999)
    # add potentially problematic points
    times.extend([n_times - 1, n_times, 2 * n_times - 1])
    for ti in times:  # let's do a subset of points for speed
        orig = raw[:, ti % n_times][0]
        for raw_combo in raw_combos:
            # these are almost_equals because of possible dtype differences
            assert_allclose(orig, raw_combo[:, ti][0])

    # verify that combining raws with different projectors throws an exception
    raw.add_proj([], remove_existing=True)
    assert_raises(ValueError, raw.append, Raw(fif_fname, preload=True))

    # now test event treatment for concatenated raw files
    events = [
        find_events(raw, stim_channel='STI 014'),
        find_events(raw, stim_channel='STI 014')
    ]
    last_samps = [raw.last_samp, raw.last_samp]
    first_samps = [raw.first_samp, raw.first_samp]
    events = concatenate_events(events, first_samps, last_samps)
    events2 = find_events(raw_combos[0], stim_channel='STI 014')
    assert_array_equal(events, events2)

    # check out the len method
    assert_true(len(raw) == raw.n_times)
    assert_true(len(raw) == raw.last_samp - raw.first_samp + 1)
        ### QUICK HACK ###
        raw_list[-1].apply_proj()
        #raw_list[-1].proj = False
        #raw_list[-1]._projector = None
        ############

        raw_list[-1].info['projs'] = projOverwrite

    #concatenate raw
    raw = mne.concatenate_raws(raw_list)

    #raw = mne.io.RawFIFF(raw_fileNames, add_eeg_ref=True)
    # Read in list of events
    events = mne.concatenate_events([mne.read_events(l_dir)
                                     for l_dir in list_fileNames],
                                    raw._first_samps, raw._last_samps)

    ###################################
    # generate epochs object from events list and raw file
    #tempEpo = generateEpochs(raw_dir, list_dir))
    eventDict = {'pitch_maintain': 1, 'space_maintain': 2,
                 'pitch_switch': 3, 'space_switch': 4}

    tmin = -0.2
    tmax = 4.75
    tempEpo = mne.Epochs(raw, events, event_id=eventDict, tmin=tmin,
                         tmax=tmax, preload=True, proj=True, verbose=False)
    #tempEpo.drop_bad_epochs()  #Done if preload=True above
    assert all(len(x) == 0 or 'IGNORED' in x for x in tempEpo.drop_log)