Example #1
0
data_path = mne.datasets.kiloword.data_path(verbose=True)
epochs = mne.read_epochs(data_path + '/kword_metadata-epo.fif')

# Show the metadata of 10 random epochs
epochs.metadata.sample(10)

###############################################################################
# Compute DSMs based on word length and visual complexity.

metadata = epochs.metadata
dsm1 = mne_rsa.compute_dsm(metadata.NumberOfLetters, metric='euclidean')
dsm2 = mne_rsa.compute_dsm(metadata.VisualComplexity, metric='euclidean')

# Plot the DSMs
mne_rsa.plot_dsms([dsm1, dsm2], names=['Word length', 'Vis. complexity'])

###############################################################################
# Perform RSA between the two DSMs using Spearman correlation

rsa_result = mne_rsa.rsa(dsm1, dsm2, metric='spearman')
print('RSA score:', rsa_result)

###############################################################################
# We can compute RSA between multiple DSMs by passing lists to the
# :func:`mne_rsa.rsa` function.

# Create DSMs for each stimulus property
columns = metadata.columns[1:]  # Skip the first column: WORD
dsms = [
    mne_rsa.compute_dsm(metadata[col], metric='euclidean') for col in columns
Example #2
0
# auditory beeps will be somewhat similar.
def sensitivity_metric(event_id_1, event_id_2):
    """Determine similarity between two epochs, given their event ids."""
    if event_id_1 == 1 and event_id_2 == 1:
        return 0  # Completely similar
    if event_id_1 == 2 and event_id_2 == 2:
        return 0.5  # Somewhat similar
    elif event_id_1 == 1 and event_id_2 == 2:
        return 0.5  # Somewhat similar
    elif event_id_1 == 2 and event_id_1 == 1:
        return 0.5  # Somewhat similar
    else:
        return 1  # Not similar at all

model_dsm = mne_rsa.compute_dsm(epochs.events[:, 2], metric=sensitivity_metric)
mne_rsa.plot_dsms(model_dsm, title='Model DSM')

###############################################################################
# This example is going to be on source-level, so let's load the inverse
# operator and apply it to obtain a volumetric source estimate for each
# epoch.
inv = mne.minimum_norm.read_inverse_operator(
    op.join(sample_path, 'sample_audvis-meg-vol-7-meg-inv.fif'))
epochs_stc = mne.minimum_norm.apply_inverse_epochs(epochs, inv, lambda2=0.1111)

###############################################################################
# Performing the RSA. This will take some time. Consider increasing ``n_jobs``
# to parallelize the computation across multiple CPUs.
rsa_vals = mne_rsa.rsa_stcs(
    epochs_stc,                   # The source localized epochs
    model_dsm,                    # The model DSM we constructed above
Example #3
0
# the metadata and the bold images are in sync. Hence, we first perform the
# operations on the `meta` pandas DataFrame. Then, we can use the DataFrame's
# index to repeat the operations on the BOLD data.
meta = meta[meta['labels'] != 'rest'].sort_values('labels')
bold = nib.Nifti1Image(bold.get_fdata()[..., meta.index], bold.affine,
                       bold.header)

###############################################################################
# We're going to hunt for areas in the brain where the signal differentiates
# nicely between the various object categories. We encode this objective in our
# "model" DSM: a DSM where stimuli belonging to the same object category have a
# dissimilarity of 0 and stimuli belonging to different categories have a
# dissimilarity of 1.
model_dsm = mne_rsa.compute_dsm(meta['labels'],
                                metric=lambda a, b: 0 if a == b else 1)
mne_rsa.plot_dsms(model_dsm, 'Model DSM')

###############################################################################
# Performing the RSA. This will take some time. Consider increasing ``n_jobs``
# to parallelize the computation across multiple CPUs.
rsa_vals = mne_rsa.rsa_nifti(
    bold,  # The BOLD data
    model_dsm,  # The model DSM we constructed above
    image_dsm_metric='correlation',  # Metric to compute the BOLD DSMs
    rsa_metric='kendall-tau-a',  # Metric to compare model and BOLD DSMs
    spatial_radius=0.01,  # Spatial radius of the searchlight patch
    roi_mask=mask,  # Restrict analysis to the VT ROI
    n_jobs=1,  # Only use one CPU core.
    verbose=False)  # Set to True to display a progress bar

###############################################################################
Example #4
0
epochs = epochs.resample(100)

###############################################################################
# The ``epochs`` object contains a ``.metadata`` field that contains
# information about the 960 words that were used in the experiment. Let's have
# a look at the metadata for the 10 random words:

epochs.metadata.sample(10)

###############################################################################
# Let's pick something obvious for this example and build a dissimilarity
# matrix (DSM) based on the number of letters in each word.

dsm_vis = mne_rsa.compute_dsm(epochs.metadata[['NumberOfLetters']],
                              metric='euclidean')
mne_rsa.plot_dsms(dsm_vis)

###############################################################################
# The above DSM will serve as our "model" DSM. In this example RSA analysis, we
# are going to compare the model DSM against DSMs created from the EEG data.
# The EEG DSMs will be created using a "searchlight" pattern. We are using
# squared Euclidean distance for our DSM metric, since we only have a few data
# points in each searlight patch. Feel free to play around with other metrics.

rsa_result = mne_rsa.rsa_epochs(
    epochs,  # The EEG data
    dsm_vis,  # The model DSM
    epochs_dsm_metric='sqeuclidean',  # Metric to compute the EEG DSMs
    rsa_metric='kendall-tau-a',  # Metric to compare model and EEG DSMs
    spatial_radius=45,  # Spatial radius of the searchlight patch
    temporal_radius=0.05,  # Temporal radius of the searchlight path
Example #5
0
for this is to construct a "model" DSM to RSA against the brain data. In this
example, we will create a DSM based on the length of the words shown during an
EEG experiment.
"""

# Import required packages
import mne
import mne_rsa

###############################################################################
# MNE-Python contains a build-in data loader for the kiloword dataset, which is
# used here as an example dataset. Since we only need the words shown during
# the experiment, which are in the metadata, we can pass ``preload=False`` to
# prevent MNE-Python from loading the EEG data, which is a nice speed gain.

data_path = mne.datasets.kiloword.data_path(verbose=True)
epochs = mne.read_epochs(data_path + '/kword_metadata-epo.fif', preload=False)

# Show the metadata of 10 random epochs
print(epochs.metadata.sample(10))

###############################################################################
# Now we are ready to create the "model" DSM, which will encode the difference
# in length between the words shown during the experiment.

dsm = mne_rsa.compute_dsm(epochs.metadata.NumberOfLetters, metric='euclidean')

# Plot the DSM
fig = mne_rsa.plot_dsms(dsm, title='Word length DSM')
fig.set_size_inches(3, 3)  # Make figure a little bigger to show axis properly