Example #1
0
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import GlobalAveragePooling2D
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import MaxPool2D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam

from mnistData import MNIST

random.seed(0)
np.random.seed(0)
tf.random.set_seed(0)

data = MNIST()
data.data_augmentation(augment_size=10000)
data.data_preprocessing(preprocess_mode="MinMax")
(
    x_train_splitted,
    x_val,
    y_train_splitted,
    y_val,
) = data.get_splitted_train_validation_set()
x_train, y_train = data.get_train_set()
x_test, y_test = data.get_test_set()
num_classes = data.num_classes

# Save Path
dir_path = os.path.abspath(
    "C:/Users/Jan/Dropbox/_Programmieren/UdemyTF/models/")
Example #2
0
    x = Flatten()(x)
    x = Dense(units=num_classes)(x)
    y_pred = Activation("softmax")(x)

    model = Model(
        inputs=[input_img],
        outputs=[y_pred]
    )

    model.summary()

    return model


if __name__ == "__main__":
    data = MNIST(with_normalization=False)
    data.data_augmentation(augment_size=5_000)

    x_train_, x_val_, y_train_, y_val_ = data.get_splitted_train_validation_set()

    model = build_model(data.img_shape, data.num_classes)

    model.compile(
        loss="categorical_crossentropy",
        optimizer=Adam(learning_rate=0.0005),
        metrics=["accuracy"]
    )

    tb_callback = TensorBoard(
        log_dir=MODEL_LOG_DIR,
        write_graph=True
Example #3
0
    x = Activation("relu")(x)
    x = MaxPool2D()(x)

    x = Flatten()(x)
    x = Dense(units=num_classes)(x)
    y_pred = Activation("softmax")(x)

    model = Model(inputs=[input_img], outputs=[y_pred])

    model.summary()

    return model


if __name__ == "__main__":
    data = MNIST(with_normalization=True)

    x_train_, x_val_, y_train_, y_val_ = data.get_splitted_train_validation_set(
    )

    model = build_model(data.img_shape, data.num_classes)

    model.compile(loss="categorical_crossentropy",
                  optimizer=Adam(learning_rate=0.0005),
                  metrics=["accuracy"])

    tb_callback = TensorBoard(log_dir=MODEL_LOG_DIR, write_graph=True)

    model.fit(x=x_train_,
              y=y_train_,
              epochs=40,
Example #4
0
    model = Model(
        inputs=[input_img],
        outputs=[y_pred]
    )

    model.compile(
        loss="categorical_crossentropy",
        optimizer="Adam",
        metrics=["accuracy"]
    )

    return model


if __name__ == "__main__":
    data = MNIST(with_normalization=True)

    x_train, y_train = data.get_train_set()

    param_distributions = {
        "filters_1": randint(8, 64),
        "kernel_size_1": randint(3, 8),
        "filters_2": randint(8, 64),
        "kernel_size_2": randint(3, 8),
        "filters_3": randint(8, 64),
        "kernel_size_3": randint(3, 8),
    }

    keras_clf = KerasClassifier(
        build_fn=build_model,
        epochs=3,
Example #5
0
    x = Flatten()(x)
    x = Dense(units=128)(x)
    x = Activation("relu")(x)
    x = Dense(units=num_classes)(x)
    y_pred = Activation("softmax")(x)

    model = Model(inputs=[input_img], outputs=[y_pred])

    model.summary()

    return model


if __name__ == "__main__":
    data = MNIST()
    x_train, y_train = data.get_train_set()
    x_test, y_test = data.get_test_set()

    img_shape = data.img_shape
    num_classes = data.num_classes

    model = build_model(img_shape, num_classes)

    model.compile(loss="categorical_crossentropy",
                  optimizer="Adam",
                  metrics=["accuracy"])

    model.fit(x=x_train / 255.0,
              y=y_train,
              epochs=3,