def testDivisibleBy(self):
   tf.reset_default_graph()
   mobilenet_v2.mobilenet(
       tf.placeholder(tf.float32, (10, 224, 224, 16)),
       conv_defs=mobilenet_v2.V2_DEF,
       divisible_by=16,
       min_depth=32)
   s = [op.outputs[0].get_shape().as_list()[-1] for op in find_ops('Conv2D')]
   s = set(s)
   self.assertSameElements([32, 64, 96, 160, 192, 320, 384, 576, 960, 1280,
                            1001], s)
 def testDivisibleByWithArgScope(self):
   tf.reset_default_graph()
   # Verifies that depth_multiplier arg scope actually works
   # if no default min_depth is provided.
   with slim.arg_scope((mobilenet.depth_multiplier,), min_depth=32):
     mobilenet_v2.mobilenet(
         tf.placeholder(tf.float32, (10, 224, 224, 2)),
         conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.1)
     s = [op.outputs[0].get_shape().as_list()[-1] for op in find_ops('Conv2D')]
     s = set(s)
     self.assertSameElements(s, [32, 192, 128, 1001])
  def testFineGrained(self):
    tf.reset_default_graph()
    # Verifies that depth_multiplier arg scope actually works
    # if no default min_depth is provided.

    mobilenet_v2.mobilenet(
        tf.placeholder(tf.float32, (10, 224, 224, 2)),
        conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.01,
        finegrain_classification_mode=True)
    s = [op.outputs[0].get_shape().as_list()[-1] for op in find_ops('Conv2D')]
    s = set(s)
    # All convolutions will be 8->48, except for the last one.
    self.assertSameElements(s, [8, 48, 1001, 1280])
  def testImageSizes(self):
    for input_size, output_size in [(224, 7), (192, 6), (160, 5),
                                    (128, 4), (96, 3)]:
      tf.reset_default_graph()
      _, ep = mobilenet_v2.mobilenet(
          tf.placeholder(tf.float32, (10, input_size, input_size, 3)))

      self.assertEqual(ep['layer_18/output'].get_shape().as_list()[1:3],
                       [output_size] * 2)
Example #5
0
def build_model(inputs, depth_multiplier, num_classes, is_training):
    with tf.variable_scope("Model"):
        logits, _ = mobilenet_v2.mobilenet(inputs,
                                           is_training=is_training,
                                           depth_multiplier=depth_multiplier,
                                           num_classes=num_classes)
        #global_pool=True)

        emo_logits = logits[:, :helpers.num_emotions]
        sent_logits = logits[:, helpers.num_emotions:helpers.num_emotions +
                             helpers.num_sentiments]

    return emo_logits, sent_logits
Example #6
0
def net(inputs,
        data_format='channels_last',
        depth_mult=1.0,
        VGG_PARAMS_FILE=None,
        is_train=False):

    if data_format != "channels_last":
        print('only works for channels last now')
        return None

    with tf.contrib.slim.arg_scope(
            mobilenet_v2.training_scope(is_training=is_train)):
        logits, endpoints = mobilenet_v2.mobilenet(inputs,
                                                   base_only=True,
                                                   reuse=tf.AUTO_REUSE,
                                                   final_endpoint="layer_19",
                                                   depth_multiplier=depth_mult)

    l15e = endpoints['layer_15/expansion_output']
    l19 = endpoints['layer_19']

    return [l15e, l19], endpoints
Example #7
0
    for i in range(num_channels):
        channels[i] -= img_mean[i]
    return tf.concat(axis=2, values=channels)


image_raw_data = tf.placeholder(tf.string, None)
img_data = tf.image.decode_jpeg(image_raw_data)
image = tf.image.convert_image_dtype(img_data, dtype=tf.uint8)
img_show = image
image.set_shape([img_size, img_size, 3])
image = tf.to_float(image)
image = _mean_image_subtraction(image)
image = tf.expand_dims(image, [0])

with tf.contrib.slim.arg_scope(mnv2.training_scope(is_training=False)):
    logits, endpoint = mnv2.mobilenet(image, num_classes=4)
#logits=tf.Print(logits,[logits],'logits: ',summarize=32)
#logits=tf.sigmoid(logits)
#logits=tf.nn.softmax(logits)
#logits = tf.Print(logits, [logits], 'softmax: ', summarize=32)
saver = tf.train.Saver()
with tf.Session() as sess:
    saver.restore(sess, './output/chamo_3000.000000_0.002084/chamo.ckpt')
    while True:
        img, cur_id = get_sample(0)
        image_raw_data_jpg = tf.gfile.FastGFile('./re/chamo.jpg', 'rb').read()
        re = sess.run([logits, img_show],
                      feed_dict={image_raw_data: image_raw_data_jpg})
        print(re[0][0])
        show_img = re[1]
        plt.imshow(show_img)
Example #8
0
def model_fn(features, labels, mode):
    feature_dict = features
    labels = tf.reshape(feature_dict["labels"], [-1])

    if mode == tf.estimator.ModeKeys.TRAIN:
        is_training = True
    else:
        is_training = False

    if FLAGS.model == 'mobilenet':
        scope = mobilenet_v2.training_scope(is_training=is_training)
        with tf.contrib.slim.arg_scope(scope):
            net, end_points = mobilenet_v2.mobilenet(
                feature_dict["features"],
                is_training=is_training,
                num_classes=FLAGS.num_classes)
            end_points['embedding'] = end_points['global_pool']
    elif FLAGS.model == 'mobilefacenet':
        scope = mobilenet_v2.training_scope(is_training=is_training)
        with tf.contrib.slim.arg_scope(scope):
            net, end_points = mobilefacenet.mobilefacenet(
                feature_dict["features"],
                is_training=is_training,
                num_classes=FLAGS.num_classes)
    elif FLAGS.model == 'metric_learning':
        with slim.arg_scope(
                inception_v1.inception_v1_arg_scope(weight_decay=0.0)):
            net, end_points = proxy_metric_learning.metric_learning(
                feature_dict["features"],
                is_training=is_training,
                num_classes=FLAGS.num_classes)
    elif FLAGS.model == 'faceresnet':
        net, end_points = mobilefacenet.faceresnet(
            feature_dict["features"],
            is_training=is_training,
            num_classes=FLAGS.num_classes)
    elif FLAGS.model == 'cifar100':
        net, end_points = cifar.nin(feature_dict["features"],
                                    labels,
                                    is_training=is_training,
                                    num_classes=FLAGS.num_classes)
    else:
        raise ValueError("Unknown model %s" % FLAGS.model)

    small_embeddings = tf.squeeze(end_points['embedding'])
    logits = end_points['Logits']
    predictions = tf.cast(tf.argmax(logits, 1), dtype=tf.int32)

    if FLAGS.final_activation in ['soft_thresh', 'none']:
        abs_embeddings = tf.abs(small_embeddings)
    else:
        abs_embeddings = small_embeddings
    nnz_small_embeddings = tf.cast(tf.less(FLAGS.zero_threshold,
                                           abs_embeddings),
                                   dtype=tf.float32)
    small_sparsity = tf.reduce_sum(nnz_small_embeddings, axis=1)
    small_sparsity = tf.reduce_mean(small_sparsity)

    mean_nnz_col = tf.reduce_mean(nnz_small_embeddings, axis=0)
    sum_nnz_col = tf.reduce_sum(nnz_small_embeddings, axis=0)
    mean_flops_ub = tf.reduce_sum(sum_nnz_col *
                                  (sum_nnz_col - 1)) / (FLAGS.batch_size *
                                                        (FLAGS.batch_size - 1))
    mean_flops = tf.reduce_sum(mean_nnz_col * mean_nnz_col)

    l1_norm_row = tf.reduce_sum(abs_embeddings, axis=1)
    l1_norm_col = tf.reduce_mean(abs_embeddings, axis=0)

    mean_l1_norm = tf.reduce_mean(l1_norm_row)
    mean_flops_sur = tf.reduce_sum(l1_norm_col * l1_norm_col)

    if mode == tf.estimator.ModeKeys.PREDICT:
        predictions_dict = {
            'predictions': predictions,
            'true_labels': feature_dict["labels"],
            'true_label_texts': feature_dict["label_texts"],
            'small_embeddings': small_embeddings,
            'sparsity/small': small_sparsity,
            'sparsity/flops': mean_flops_ub,
            'filename': features["filename"]
        }
        return tf.estimator.EstimatorSpec(mode, predictions=predictions_dict)

    if FLAGS.model == 'mobilenet':
        cr_ent_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=labels)
    elif 'face' in FLAGS.model:
        cr_ent_loss = mobilefacenet.arcface_loss(logits=logits,
                                                 labels=labels,
                                                 out_num=FLAGS.num_classes)
    elif FLAGS.model == 'metric_learning':
        cr_ent_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=labels)
        # cr_ent_loss = mobilefacenet.arcface_loss(logits=logits, labels=labels, out_num=FLAGS.num_classes)
    elif FLAGS.model == 'cifar100':
        # cr_ent_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
        cr_ent_loss = tf.contrib.losses.metric_learning.triplet_semihard_loss(
            labels, small_embeddings, margin=0.1)
        # cr_ent_loss = mobilefacenet.arcface_loss(logits=logits,
        #     labels=labels, out_num=FLAGS.num_classes, m=0.0)
        # cr_ent_loss = triplet_semihard_loss(labels=labels, embeddings=small_embeddings,
        #     pairwise_distance=lambda embed: pairwise_distance_euclid(embed, squared=True), margin=0.3)
    else:
        raise ValueError('Unknown model %s' % FLAGS.model)
    cr_ent_loss = tf.reduce_mean(
        cr_ent_loss) + tf.losses.get_regularization_loss()

    ema = tf.train.ExponentialMovingAverage(decay=0.99)
    ema_op = ema.apply([mean_l1_norm])
    moving_l1_norm = ema.average(mean_l1_norm)

    global_step = tf.train.get_or_create_global_step()
    all_ops = [ema_op]

    l1_weight = tf.Variable(0.0, name='l1_weight', trainable=False)

    if FLAGS.l1_weighing_scheme == 'constant':
        l1_weight = FLAGS.l1_parameter
    elif FLAGS.l1_weighing_scheme == 'dynamic_1':
        l1_weight = FLAGS.l1_parameter / moving_l1_norm
        l1_weight = tf.stop_gradient(l1_weight)
        l1_weight = tf.train.piecewise_constant(x=global_step,
                                                boundaries=[5],
                                                values=[0.0, l1_weight])
    elif FLAGS.l1_weighing_scheme == 'dynamic_2':
        if FLAGS.sparsity_type == "flops_sur":
            update_lr = 1e-5
        else:
            update_lr = 1e-4
        update = update_lr * (FLAGS.l1_parameter - cr_ent_loss)
        assign_op = tf.assign(l1_weight, tf.nn.relu(l1_weight + update))
        all_ops.append(assign_op)
    elif FLAGS.l1_weighing_scheme == 'dynamic_3':
        update_lr = 1e-4
        global_step = tf.train.get_or_create_global_step()
        upper_bound = FLAGS.l1_parameter - (
            FLAGS.l1_parameter - 12.0) * tf.cast(global_step, tf.float32) / 5e5
        upper_bound = tf.cast(upper_bound, tf.float32)
        update = update_lr * tf.sign(upper_bound - cr_ent_loss)
        assign_op = tf.assign(l1_weight, l1_weight + tf.nn.relu(update))
        all_ops.append(assign_op)
    elif FLAGS.l1_weighing_scheme == 'dynamic_4':
        l1_weight = FLAGS.l1_parameter * tf.minimum(
            1.0, (tf.cast(global_step, tf.float32) / FLAGS.l1_p_steps)**2)
    elif FLAGS.l1_weighing_scheme is None:
        l1_weight = 0.0
    else:
        raise ValueError('Unknown l1_weighing_scheme %s' %
                         FLAGS.l1_weighing_scheme)

    if FLAGS.sparsity_type == 'l1_norm':
        sparsity_loss = l1_weight * mean_l1_norm
    elif FLAGS.sparsity_type == 'flops_sur':
        sparsity_loss = l1_weight * mean_flops_sur
    elif FLAGS.sparsity_type is None:
        sparsity_loss = 0.0
    else:
        raise ValueError("Unknown sparsity_type %d" % FLAGS.sparsity_type)

    total_loss = cr_ent_loss + sparsity_loss
    accuracy = tf.reduce_mean(
        tf.cast(tf.equal(predictions, labels), dtype=tf.float32))

    if mode == tf.estimator.ModeKeys.EVAL:
        global_accuracy = tf.metrics.mean(accuracy)
        global_small_sparsity = tf.metrics.mean(small_sparsity)
        global_flops = tf.metrics.mean(mean_flops_ub)
        global_l1_norm = tf.metrics.mean(mean_l1_norm)
        global_mean_flops_sur = tf.metrics.mean(mean_flops_sur)
        global_cr_ent_loss = tf.metrics.mean(cr_ent_loss)

        metrics = {
            'accuracy': global_accuracy,
            'sparsity/small': global_small_sparsity,
            'sparsity/flops': global_flops,
            'l1_norm': global_l1_norm,
            'l1_norm/flops_sur': global_mean_flops_sur,
            'loss/cr_ent_loss': global_cr_ent_loss,
        }
        return tf.estimator.EstimatorSpec(mode,
                                          loss=total_loss,
                                          eval_metric_ops=metrics)

    if mode == tf.estimator.ModeKeys.TRAIN:
        base_lrate = FLAGS.learning_rate
        learning_rate = tf.train.piecewise_constant(
            x=global_step,
            boundaries=[
                FLAGS.decay_step if FLAGS.decay_step is not None else int(1e7)
            ],
            values=[base_lrate, base_lrate / 10.0])

        tf.summary.image("input", feature_dict["features"], max_outputs=1)
        tf.summary.scalar('sparsity/small', small_sparsity)
        tf.summary.scalar('sparsity/flops', mean_flops_ub)
        tf.summary.scalar('accuracy', accuracy)
        tf.summary.scalar('l1_norm', mean_l1_norm)
        tf.summary.scalar('l1_norm/ema',
                          moving_l1_norm)  # Comment this for mom
        tf.summary.scalar('l1_norm/l1_weight', l1_weight)
        tf.summary.scalar('l1_norm/flops_sur', mean_flops_sur)
        tf.summary.scalar('learning_rate', learning_rate)
        tf.summary.scalar('loss/cr_ent_loss', cr_ent_loss)
        tf.summary.scalar(
            'sparsity/ratio', mean_flops * FLAGS.embedding_size /
            (small_sparsity * small_sparsity))
        try:
            tf.summary.scalar('loss/upper_bound', upper_bound)
        except NameError:
            print("Skipping 'upper_bound' summary")
        for variable in tf.trainable_variables():
            if 'soft_thresh' in variable.name:
                print('Adding summary for lambda')
                tf.summary.scalar('lambda', variable)

        # Histogram summaries
        # gamma = tf.get_default_graph().get_tensor_by_name('MobilenetV2/Conv_2/BatchNorm/gamma:0')
        # pre_relu = tf.get_default_graph().get_tensor_by_name(
        #       'MobilenetV2/Conv_2/BatchNorm/FusedBatchNorm:0')
        # pre_relu = tf.squeeze(pre_relu)
        # tf.summary.histogram('gamma', gamma)
        # tf.summary.histogram('pre_relu', pre_relu[:, 237])
        # tf.summary.histogram('small_activations', nnz_small_embeddings)
        # tf.summary.histogram('small_activations/log', tf.log(nnz_small_embeddings + 1e-10))
        # fl_sur_ratio = (mean_nnz_col * mean_nnz_col) / (l1_norm_col * l1_norm_col)
        # tf.summary.histogram('fl_sur_ratio', fl_sur_ratio)
        # tf.summary.histogram('fl_sur_ratio/log', tf.log(fl_sur_ratio + 1e-10))
        # l1_sur_ratio = (mean_nnz_col * mean_nnz_col) / l1_norm_col
        # tf.summary.histogram('l1_sur_ratio', l1_sur_ratio)
        # tf.summary.histogram('l1_sur_ratio/log', tf.log(l1_sur_ratio + 1e-10))

        if FLAGS.optimizer == 'mom':
            optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
                                                   momentum=FLAGS.momentum)
        elif FLAGS.optimizer == 'sgd':
            optimizer = tf.train.GradientDescentOptimizer(
                learning_rate=learning_rate)
        elif FLAGS.optimizer == 'adam':
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
                                               epsilon=0.0001)
        elif FLAGS.optimizer == 'rmsprop':
            optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate,
                                                  epsilon=0.01,
                                                  momentum=FLAGS.momentum)
        else:
            raise ValueError("Unknown optimizer %s" % FLAGS.optimizer)

        # Make the optimizer distributed
        optimizer = hvd.DistributedOptimizer(optimizer)

        train_op = tf.contrib.slim.learning.create_train_op(
            total_loss,
            optimizer,
            global_step=tf.train.get_or_create_global_step())
        all_ops.append(train_op)
        merged = tf.group(*all_ops)

        return tf.estimator.EstimatorSpec(mode,
                                          loss=total_loss,
                                          train_op=merged)
Example #9
0

image, label = get_raw_img('./re')
image.set_shape([img_size, img_size, 3])
image = tf.to_float(image)
image = _mean_image_subtraction(image)
batchsize = 32
images, labels = tf.train.shuffle_batch([image, label],
                                        batch_size=batchsize,
                                        num_threads=1,
                                        capacity=5 * batchsize,
                                        min_after_dequeue=3 * batchsize)
#check_imgs(images, labels)
with tf.contrib.slim.arg_scope(mnv2.training_scope(is_training=True)):
    logits, endpoint = mnv2.mobilenet(images,
                                      num_classes=4,
                                      reuse=tf.AUTO_REUSE)
#labels=tf.Print(labels, [labels], "labels:",summarize=32)
#labels=tf.Print(labels, [tf.sigmoid(logits)], "logits:",summarize=32)
loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits))
optimizer = tf.train.AdamOptimizer(1e-4)
train_step = slim.learning.create_train_op(loss, optimizer)
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
    sess.run(init_op)
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)
    #saver.restore(sess, './output/chamo_4000.000000_0.000018/chamo.ckpt')
    writer = tf.summary.FileWriter("logs/", sess.graph)
Example #10
0
def mobilefacenet(features, is_training, num_classes):
    if FLAGS.final_activation == 'step':
        final_activation = step
    elif FLAGS.final_activation == 'relu':
        final_activation = tf.nn.relu
    elif FLAGS.final_activation == 'relu6':
        final_activation = tf.nn.relu6
    elif FLAGS.final_activation == 'soft_thresh':
        final_activation = soft_thresh(0.5)
    elif FLAGS.final_activation == 'none':
        final_activation = None
    else:
        raise ValueError('Unknown activation %s' % str(FLAGS.final_activation))

    MFACENET_DEF = dict(
        defaults={
            # Note: these parameters of batch norm affect the architecture
            # that's why they are here and not in training_scope.
            (
                slim.batch_norm, ): {
                'center': True,
                'scale': True
            },
            (slim.conv2d, slim.fully_connected, slim.separable_conv2d): {
                'normalizer_fn': slim.batch_norm,
                'activation_fn': tf.nn.leaky_relu,
                'weights_regularizer': slim.l2_regularizer(4e-5)
            },
            (ops.expanded_conv, ): {
                'split_expansion': 1,
                'normalizer_fn': slim.batch_norm,
                'residual': True
            },
            (slim.conv2d, slim.separable_conv2d): {
                'padding': 'SAME'
            },
        },
        spec=[
            op(slim.conv2d, stride=2, num_outputs=64, kernel_size=[3, 3]),
            op(slim.separable_conv2d,
               num_outputs=None,
               kernel_size=[3, 3],
               depth_multiplier=1,
               stride=1),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=2,
               num_outputs=64),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=64),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=64),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=64),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=64),
            op(ops.expanded_conv,
               expansion_size=expand_input(4),
               stride=2,
               num_outputs=128),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=128),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=128),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=128),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=128),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=128),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=128),
            op(ops.expanded_conv,
               expansion_size=expand_input(4),
               stride=2,
               num_outputs=128),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=128),
            op(ops.expanded_conv,
               expansion_size=expand_input(2),
               stride=1,
               num_outputs=128),
            op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=512),
            op(slim.separable_conv2d,
               num_outputs=None,
               kernel_size=[7, 7],
               depth_multiplier=1,
               stride=1,
               padding="VALID",
               activation_fn=None),
            op(slim.conv2d,
               stride=1,
               kernel_size=[1, 1],
               num_outputs=FLAGS.embedding_size,
               weights_regularizer=slim.l2_regularizer(4e-4),
               activation_fn=final_activation),
        ],
    )

    net, end_points = mobilenet_v2.mobilenet(features,
                                             is_training=is_training,
                                             num_classes=num_classes,
                                             base_only=True,
                                             conv_defs=MFACENET_DEF)

    embedding = end_points['embedding']
    embedding = tf.squeeze(embedding, [1, 2])
    embedding_unnorm = embedding
    embedding = tf.nn.l2_normalize(embedding, axis=1)
    if FLAGS.final_activation == 'step':
        end_points['embedding'] = embedding_unnorm
    else:
        end_points['embedding'] = embedding
    logits = arcface_logits(embedding, num_classes)
    end_points['Logits'] = logits

    return logits, end_points