Example #1
0
    def vote_proba(self, X: modALinput, **predict_proba_kwargs) -> Any:
        """
        Predicts the probabilities of the classes for each sample and each learner.

        Args:
            X: The samples for which class probabilities are to be calculated.
            **predict_proba_kwargs: Keyword arguments for the :meth:`predict_proba` of the learners.

        Returns:
            Probabilities of each class for each learner and each instance.
        """

        # get dimensions
        n_samples = X.shape[0]
        n_learners = len(self.learner_list)
        proba = np.zeros(shape=(n_samples, n_learners, self.n_classes_))

        # checking if the learners in the Committee know the same set of class labels
        if check_class_labels(*[learner.estimator for learner in self.learner_list]):
            # known class labels are the same for each learner
            # probability prediction is straightforward

            for learner_idx, learner in enumerate(self.learner_list):
                proba[:, learner_idx, :] = learner.predict_proba(X, **predict_proba_kwargs)

        else:
            for learner_idx, learner in enumerate(self.learner_list):
                proba[:, learner_idx, :] = check_class_proba(
                    proba=learner.predict_proba(X, **predict_proba_kwargs),
                    known_labels=learner.estimator.classes_,
                    all_labels=self.classes_
                )

        return proba
Example #2
0
    def vote_proba(self, X: modALinput, **predict_proba_kwargs) -> Any:

        # get dimensions
        n_samples = X.shape[0]
        n_learners = len(self.learner_list)
        proba = np.zeros(shape=(n_samples, n_learners, self.n_classes_))

        # checking if the learners in the Committee know the same set of class labels
        if check_class_labels(
                *[learner.estimator for learner in self.learner_list]):
            # known class labels are the same for each learner
            # probability prediction is straightforward

            for learner_idx, learner in enumerate(self.learner_list):
                proba[:, learner_idx, :] = learner.predict_proba(
                    X, **predict_proba_kwargs)

        else:
            for learner_idx, learner in enumerate(self.learner_list):
                proba[:, learner_idx, :] = check_class_proba(
                    proba=learner.predict_proba(X, **predict_proba_kwargs),
                    known_labels=learner.estimator.classes_,
                    all_labels=self.classes_)

        return proba
Example #3
0
    def vote_proba(self, X, **predict_proba_kwargs):
        """
        Predicts the probabilities of the classes for each sample and each learner.

        Parameters
        ----------
        X: numpy.ndarray of shape (n_samples, n_features)
            The samples for which class probabilities are to be calculated.

        predict_proba_kwargs: keyword arguments
            Keyword arguments for the .predict_proba() method of the learners.

        Returns
        -------
        vote_proba: numpy.ndarray of shape (n_samples, n_learners, n_classes)
            Probabilities of each class for each learner and each instance.

        """

        check_array(X, ensure_2d=True)

        # get dimensions
        n_samples = X.shape[0]
        n_learners = len(self._learner_list)
        proba = np.zeros(shape=(n_samples, n_learners, self.n_classes_))

        # checking if the learners in the Committee know the same set of class labels
        if check_class_labels(
                *[learner._predictor for learner in self._learner_list]):
            # known class labels are the same for each learner
            # probability prediction is straightforward

            for learner_idx, learner in enumerate(self._learner_list):
                proba[:, learner_idx, :] = learner.predict_proba(
                    X, **predict_proba_kwargs)

        else:
            for learner_idx, learner in enumerate(self._learner_list):
                proba[:, learner_idx, :] = check_class_proba(
                    proba=learner.predict_proba(X, **predict_proba_kwargs),
                    known_labels=learner._predictor.classes_,
                    all_labels=self.classes_)

        return proba
Example #4
0
    def vote_proba(self, X, **predict_proba_kwargs):
        """
        Predicts the probabilities of the classes for each sample and each learner.

        Parameters
        ----------
        X: numpy.ndarray of shape (n_samples, n_features)
            The samples for which class probabilities are to be calculated.

        predict_proba_kwargs: keyword arguments
            Keyword arguments for the .predict_proba() method of the learners.

        Returns
        -------
        vote_proba: numpy.ndarray of shape (n_samples, n_learners, n_classes)
            Probabilities of each class for each learner and each instance.

        """

        check_array(X, ensure_2d=True)

        # get dimensions
        n_samples = X.shape[0]
        n_learners = len(self._learner_list)
        proba = np.zeros(shape=(n_samples, n_learners, self.n_classes_))

        # checking if the learners in the Committee know the same set of class labels
        if check_class_labels(*[learner._predictor for learner in self._learner_list]):
            # known class labels are the same for each learner
            # probability prediction is straightforward

            for learner_idx, learner in enumerate(self._learner_list):
                proba[:, learner_idx, :] = learner.predict_proba(X, **predict_proba_kwargs)

        else:
            for learner_idx, learner in enumerate(self._learner_list):
                proba[:, learner_idx, :] = check_class_proba(
                    proba=learner.predict_proba(X, **predict_proba_kwargs),
                    known_labels=learner._predictor.classes_,
                    all_labels=self.classes_
                )

        return proba