columns=[ 'Batting Average', 'Omega Ratio', 'Up Months', 'Down Months', 'Slugging Ratio', 'Up-Capture Russell', 'Down-Capture Russell' ], market_index='Russell 3000', MAR=0, threshold=0, order=1, start_gap=start_gap) ### Daily maximum Drawdown for differnt portfolio max_dd_df = m.time_drawdown(df_data, 'TeamCo Client Composite', 109, 0, 109, start_gap=6) ### Maximum Drawdown for given time window max_dd = m.max_drawdown(df_data, 'TeamCo Client Composite', 109, 0, 109, start_gap=6) ### Rolling beta rolling_beta_df = m.rolling_beta(df_data, columns_name=columns_name, window_length=36, min_periods=36, start_gap=6)
Corr_df_p = r.corr_table(df_data, index_name_3, market_index, target_year, condition='Positive') ### Positive Correlation table Corr_df_np = r.corr_table(df_data, index_name_3, market_index, target_year, condition='Non-positive') ### Summary table Summary_table_df = r.summary_table(df_data, index_name, summary_columns, market_index, MAR) ### Daily maximum Drawdown for differnt portfolio max_dd_df = m.time_drawdown(df_data, 'TeamCo Client Composite') ### Maximum Drawdown for given time window max_dd = m.max_drawdown(df_data, 'TeamCo Client Composite') ### Rolling beta rolling_beta_df = m.rolling_beta(df_data, columns_name, window_length, min_periods) ### Rolling annulized return rolling_annual_return_df = m.rolling_annulized_return( df_data, columns_name, window_length, min_periods) ### Cummulative return cum_return_df = m.cumulative_return(df_data, columns_name, window_length, min_periods) ### Rolling sortino ratio rolling_sortino_ratio_df = m.rolling_sortino_ratio(df_data, columns_name, window_length,