def map_metabolites_compartments(model_id2dfs, chebi=None): if not chebi: chebi = parse_simple(get_chebi()) model_id2m_ids_groups = map_metabolites(model_id2dfs, chebi) model_id2c_ids_groups = map_comps(model_id2dfs) model_id2c_id2i = defaultdict(dict) for i, model_id2c_ids in enumerate(model_id2c_ids_groups): for model_id, c_ids in model_id2c_ids.items(): model_id2c_id2i[model_id].update({c_id: i for c_id in c_ids}) model_id2m_ids_same_comp_groups = [] for model_id2m_ids in model_id2m_ids_groups: i2m_ids = defaultdict(list) for model_id, m_ids in model_id2m_ids.items(): for m_id in m_ids: df, _, _ = model_id2dfs[model_id] c_id = df.at[m_id, 'Compartment'] if c_id in model_id2c_id2i[model_id]: i2m_ids[model_id2c_id2i[model_id][c_id]].append((model_id, m_id)) for m_ids in i2m_ids.values(): model_id2m_ids = defaultdict(set) if len(m_ids) > 1: for model_id, m_id in m_ids: model_id2m_ids[model_id].add(m_id) if model_id2m_ids: model_id2m_ids_same_comp_groups.append(model_id2m_ids) return model_id2c_ids_groups, [it for it in model_id2m_ids_same_comp_groups if len(it) > 1], model_id2c_id2i
def import_sbml(input_model, sbml_file): logging.info('parsing ChEBI') chebi = parse_simple(get_chebi()) logging.info('reading generalized model from %s' % sbml_file) r_id2g_id, s_id2gr_id, ub_sps = get_quotient_maps(chebi, sbml_file) logging.info('fixing labels and compartments') check_names(input_model) check_compartments(input_model) logging.info('annotating with GO') go = parse_simple(get_go()) annotate_compartments(input_model, go) c_id2level = comp2level(input_model, go) c_id2info, c_id2outs = compute_c_id2info(c_id2level, input_model) def get_r_comp(all_comp_ids): if len(all_comp_ids) == 1: return all_comp_ids.pop() get_level = lambda c_id: c_id2level[c_id][0] outer_most = min(all_comp_ids, key=get_level) inner_most = max(all_comp_ids, key=get_level) outer_level, inner_level = get_level(outer_most), get_level(inner_most) if outer_level == inner_level or (outer_most not in c_id2outs[inner_most]): candidates = set(c_id2outs[inner_most]) & set( c_id2outs[outer_most]) if candidates: return max(candidates, key=get_level) else: return outer_most if inner_level - outer_level > 1: return max(c_id2outs[inner_most], key=get_level) return outer_most logging.info('initialising the graph') graph = tlp.newGraph() graph.setName(input_model.getId()) create_props(graph) logging.info('adding species nodes') id2n = species2nodes(graph, input_model, ub_sps) logging.info('adding reaction nodes') reactions2nodes(get_r_comp, graph, id2n, input_model) # for n in (n for n in graph.getNodes() if TYPE_SPECIES == graph[TYPE][n] and graph.deg(n) > 5 \ # and not graph[ID][n] in s_id2gr_id): # graph[UBIQUITOUS][n] = True logging.info('duplicating nodes') duplicate_nodes(graph) logging.info('marking species/reaction groups') mark_ancestors(graph, r_id2g_id, s_id2gr_id, c_id2info) return graph, c_id2info, c_id2outs, chebi, ub_sps
def add_boundary_metabolites(in_sbml, out_sbml): """ Creates a boundary compartment with the id 'Boundary', and transforms each input/output reaction '*_e <-> ' into '*_e <-> *_b'. :param in_sbml: path to the SBML file with the original model :param out_sbml: path where to store the resulting SBML file """ input_doc = libsbml.SBMLReader().readSBML(in_sbml) model = input_doc.getModel() chebi = parse_simple(get_chebi()) annotate_metabolites(model, chebi) create_boundary_species_in_boundary_reactions(model) libsbml.SBMLWriter().writeSBMLToFile(input_doc, out_sbml)
def combine_models(model_id2sbml, model_id2S, path): logging.info('Going to merge models...') chebi = parse_simple(get_chebi()) model_id2dfs = get_model_data(model_id2sbml) model_id2c_id_groups, model_id2m_id_groups, model_id2c_id2i = \ map_metabolites_compartments(model_id2dfs, chebi=chebi) logging.info('Mapped metabolites and compartments.') ignore_m_ids = get_ignored_metabolites(model_id2dfs, get_proton_ch_ids()) S = join(model_id2m_id_groups, model_id2S) ignore_m_ids |= {S.m_id2gr_id[m_id] for m_id in ignore_m_ids if m_id in S.m_id2gr_id} merge(S, ignore_m_ids) model_id2r_id_groups = get_r_id_groups(S) logging.info('Mapped reactions.') sbml = os.path.join(path, 'Merged_model.xml') model_id2id2id, common_ids, S = simple_merge_models(S, model_id2c_id2i, model_id2dfs, sbml) return sbml, S, model_id2id2id, common_ids, model_id2dfs, \ (model_id2c_id_groups, model_id2m_id_groups, model_id2r_id_groups)
def merge_models(in_sbml_list, out_sbml): if not in_sbml_list: raise ValueError('Provide SBML models to be merged') go = parse_simple(get_go()) chebi = parse_simple(get_chebi()) i = 0 model_ids = set() go2c_id = {} doc = libsbml.SBMLDocument(2, 4) model = doc.createModel() model.setId('m_merged') m_c_ids = set() for o_sbml in in_sbml_list: o_doc = libsbml.SBMLReader().readSBML(o_sbml) set_consistency_level(o_doc) o_doc.checkL2v4Compatibility() o_doc.setLevelAndVersion(2, 4, False, True) o_model = o_doc.getModel() logging.info("Processing %s" % o_sbml) model_id = get_model_id(i, model_ids, o_model) update_model_element_ids(model_id, o_model, go2c_id, go, chebi) for e in o_model.getListOfCompartments(): c_id = e.getId() if c_id not in m_c_ids: if model.addCompartment(e): copy_compartment(e, model) m_c_ids.add(c_id) for e in o_model.getListOfSpecies(): if model.getSpecies(e.getId()): continue if model.addSpecies(e): copy_species(e, model) for e in o_model.getListOfReactions(): if model.addReaction(e): copy_reaction(e, model) libsbml.writeSBMLToFile(doc, out_sbml)
<body> <br/> <p class="centre">We are visualizing your model now...</p> <br/> <img class="img-centre" src="http://mimoza.bordeaux.inria.fr/lib/modelmap/ajax-loader.gif" id="img" /> <div id="hidden" style="visibility:hidden;height:0px;">''') sys.stdout.flush() temp = os.dup(sys.stdout.fileno()) try: url = '/%s/comp.html' % m_dir_id if not os.path.exists(os.path.join('..', m_dir_id, 'comp.html')): chebi = parse_simple(get_chebi()) reader = libsbml.SBMLReader() input_document = reader.readSBML(groups_sbml) input_model = input_document.getModel() # sbml -> tulip graph logging.info('sbml -> tlp') graph, c_id2info, c_id2outs, chebi, ub_sps = import_sbml( input_model, groups_sbml) try: n2xy = parse_layout_sbml(groups_sbml) except LoPlError: n2xy = None fc, (n2lo,
<body> <br/> <p class="centre">We are visualizing your model now...</p> <br/> <img class="img-centre" src="http://mimoza.bordeaux.inria.fr/lib/modelmap/ajax-loader.gif" id="img" /> <div id="hidden" style="visibility:hidden;height:0px;">''') sys.stdout.flush() temp = os.dup(sys.stdout.fileno()) try: url = '/%s/comp.html' % m_dir_id if not os.path.exists(os.path.join('..', m_dir_id, 'comp.html')): chebi = parse_simple(get_chebi()) reader = libsbml.SBMLReader() input_document = reader.readSBML(groups_sbml) input_model = input_document.getModel() # sbml -> tulip graph logging.info('sbml -> tlp') graph, c_id2info, c_id2outs, chebi, ub_sps = import_sbml(input_model, groups_sbml) try: n2xy = parse_layout_sbml(groups_sbml) except LoPlError: n2xy = None fc, (n2lo, e2lo), hidden_c_ids, c_id_hidden_ubs = graph2geojson(c_id2info, c_id2outs, graph, n2xy, onto=chebi) c_id2out_c_id = {}
__author__ = 'anna' if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Generalizes an SBML model.") parser.add_argument('--model', required=True, type=str, help="input model in SBML format") parser.add_argument('--output_model', default=None, type=str, help="path to the output generalized model in SBML format") parser.add_argument('--groups_model', default=None, type=str, help="path to the output model in SBML format with groups extension to encode similar elements") parser.add_argument('--verbose', action="store_true", help="print logging information") parser.add_argument('--log', default=None, help="a log file") params = parser.parse_args() prefix = os.path.splitext(params.model)[0] if not params.output_model: params.output_model = "%s_generalized.xml" % prefix if not params.groups_model: params.groups_model = "%s_with_groups.xml" % prefix if params.verbose: logging.basicConfig(level=logging.INFO) logging.info("parsing ChEBI...") ontology = parse_simple(get_chebi()) r_id2clu, s_id2clu, _, _ = generalize_model(params.model, ontology, params.groups_model, params.output_model, ub_chebi_ids={'chebi:ch'})
def process_sbml(sbml, verbose, ub_ch_ids=None, web_page_prefix=None, generalize=True, log_file=None, id2mask=None, layer2mask=DEFAULT_LAYER2MASK, tab2html=None, title=None, h1=None, id2color=None, tabs={ABOUT_TAB, DOWNLOAD_TAB}, info='', invisible_layers=None, sbgn=True, cytoscape=True): """ Generalizes and visualizes a given SBML model. :param sbml: a path to the input SBML file :param verbose: if logging information should be printed :param ub_ch_ids: optional, ChEBI ids to be considered as ubiquitous. If left None, will be calculated automatically. :param web_page_prefix: optional, how this model's webpage will be identified. If left None an identifier will be generated based on the SBML file's md5. :param generalize: optional, whether the generalization should be performed. The default is True :param log_file: optional, a file where the logging information should be redirected (only needed if verbose is set to True) :param id2mask: optional, :param layer2mask: optional, a dict storing the correspondence between a layer name and an its id mask :param tab2html: optional, :param title: optional, the title for the web page :param h1: optional, the main header of the web page :param id2color: optional, :param tabs: optional, a set of names of tabs that should be shown :param info: optional, additional information to be displayed in the bottom of the web page :param invisible_layers: optional, the layers of the visualized metabolic map that should be hidden :return: void """ # Read the SBML reader = libsbml.SBMLReader() doc = reader.readSBML(sbml) model = doc.getModel() if not model: raise Exception( "The model should be in SBML format, check your file %s" % sbml) model_id = model.getId() if not model_id: sbml_name = os.path.splitext(os.path.basename(sbml))[0] model.setId(sbml_name) model_id = sbml_name # Prepare the output directories web_page_prefix = web_page_prefix if web_page_prefix else check_md5(sbml) sbml_dir = dirname(abspath(sbml)) directory = os.path.join(sbml_dir, web_page_prefix) if not os.path.exists(directory): os.makedirs(directory) lib_path = os.path.join(directory, 'lib') if not os.path.exists(lib_path): copytree(get_lib(), lib_path) # Prepare the logger if verbose: logging.captureWarnings(True) logging.basicConfig(level=logging.INFO, format='%(asctime)s: %(message)s', datefmt="%Y-%m-%d %H:%M:%S", filename=log_file) # Generalize the model if needed groups_sbml = os.path.join(directory, '%s_with_groups.xml' % model_id) gen_sbml = os.path.join(directory, '%s_generalized.xml' % model_id) if check_for_groups(sbml, SBO_CHEMICAL_MACROMOLECULE, GROUP_TYPE_UBIQUITOUS): if sbml != groups_sbml: if not libsbml.SBMLWriter().writeSBMLToFile(doc, groups_sbml): raise Exception("Could not write your model to %s" % groups_sbml) else: chebi = parse_simple(get_chebi()) if generalize: logging.info('Generalizing the model...') generalize_model(sbml, chebi, groups_sbml, gen_sbml, ub_chebi_ids=ub_ch_ids) else: gen_sbml = None logging.info('Ubiquitizing the model...') ubiquitize_model(sbml, chebi, groups_sbml, ub_chebi_ids=ub_ch_ids) # Visualize the model reader = libsbml.SBMLReader() input_document = reader.readSBML(groups_sbml) input_model = input_document.getModel() root, c_id2info, c_id2outs, chebi, ub_sps = import_sbml( input_model, groups_sbml) c_id2out_c_id = {} for c_id, c_info in c_id2info.items(): _, _, (_, out_c_id) = c_info if out_c_id: c_id2out_c_id[c_id] = out_c_id try: n2xy = parse_layout_sbml(sbml) if n2xy: logging.info('Found layout in the model...') r_size = next((n2xy[r.getId()][1][0] for r in input_model.getListOfReactions() if r.getId() in n2xy), None) if r_size: scale_factor = REACTION_SIZE / r_size if scale_factor != 1: keys = n2xy.keys() for n_id in keys: value = n2xy[n_id] if isinstance(value, dict): value = { r_id: (scale(xy, scale_factor), scale(wh, scale_factor)) for (r_id, (xy, wh)) in value.items() } else: xy, wh = value value = scale(xy, scale_factor), scale( wh, scale_factor) n2xy[n_id] = value except LoPlError: n2xy = None fc, (n2lo, e2lo), hidden_c_ids, c_id_hidden_ubs = \ graph2geojson(c_id2info, c_id2outs, root, n2xy, id2mask=id2mask, onto=chebi, colorer=color if not id2color else lambda graph: color_by_id(graph, id2color)) if n2lo: groups_document = reader.readSBML(groups_sbml) groups_model = groups_document.getModel() if gen_sbml: gen_document = reader.readSBML(gen_sbml) gen_model = gen_document.getModel() else: gen_model = False save_as_layout_sbml(groups_model, gen_model, groups_sbml, gen_sbml, n2lo, ub_sps) if sbgn: groups_sbgn = os.path.join(directory, '%s.sbgn' % model_id) gen_sbgn = os.path.join(directory, '%s_generalized.sbgn' % model_id) try: save_as_sbgn(n2lo, e2lo, groups_model, groups_sbgn) logging.info(' exported as SBGN %s' % groups_sbgn) except Exception as e: logging.error("Didn't manage to save to SBGN: %s" % e) if gen_model: try: save_as_sbgn(n2lo, e2lo, gen_model, gen_sbgn) logging.info(' exported as SBGN %s' % groups_sbgn) except Exception as e: logging.error("Didn't manage to save to SBGN: %s" % e) if cytoscape: out_json = os.path.join(directory, '%s.cyjs' % model_id) save_as_cytoscape_json(n2lo, model, out_json, ub_sps) logging.info(' exported as Cytoscape json %s' % out_json) if gen_model: out_json = os.path.join(directory, '%s_generalized.cyjs' % model_id) save_as_cytoscape_json(n2lo, gen_model, out_json, ub_sps) # Serialize the result serialize(directory=directory, m_dir_id=web_page_prefix, input_model=input_model, c_id2level2features=fc, c_id2out_c_id=c_id2out_c_id, hidden_c_ids=hidden_c_ids, c_id_hidden_ubs=c_id_hidden_ubs, tabs=tabs, groups_sbml=groups_sbml, layer2mask=layer2mask, tab2html=tab2html, title=title, h1=h1, invisible_layers=invisible_layers)
parser.add_argument('--model', required=True, type=str, help="input model in SBML format " "or a directory containing several models if they first need to be merged") parser.add_argument('--chebi', default=None, type=str, help="path to the ChEBI ontology file in OBO format") parser.add_argument('--output_model', default=None, type=str, help="path to the output generalized model in SBML format") parser.add_argument('--groups_model', default=None, type=str, help="path to the output model in SBML format with groups extension to encode similar elements") parser.add_argument('--merged_model', default=None, type=str, help="path to the output merged model in SBML format") parser.add_argument('--verbose', action="store_true", help="print logging information") parser.add_argument('--log', default=None, help="a log file") params = parser.parse_args() if not params.chebi: params.chebi = get_chebi() prefix = os.path.splitext(params.model)[0] if not params.merged_model: params.merged_model = "%s.xml" % prefix if not params.output_model: params.output_model = "%s_generalized.xml" % prefix if not params.groups_model: params.groups_model = "%s_with_groups.xml" % prefix if params.verbose: logging.basicConfig(level=logging.INFO) logging.info("parsing ChEBI...") ontology = parse_simple(params.chebi) if os.path.isdir(params.model): in_sbml_list = ['%s/%s' % (params.model, f) for f in glob.glob(os.path.join(params.model, '*'))