Example #1
0
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 128
        super(ResNet, self).__init__()
        self.conv1 = conv3x3(3, 64, stride=2)
        self.bn1 = SynchronizedBatchNorm2d(64)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(64, 64)
        self.bn2 = SynchronizedBatchNorm2d(64)
        self.relu2 = nn.ReLU(inplace=True)
        self.conv3 = conv3x3(64, 128)
        self.bn3 = SynchronizedBatchNorm2d(128)
        self.relu3 = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, SynchronizedBatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
Example #2
0
    def __init__(self,
                 num_class=150,
                 fc_dim=4096,
                 use_softmax=False,
                 pool_scales=(1, 2, 3, 6)):
        super(PPMDeepsup, self).__init__()
        self.use_softmax = use_softmax

        self.ppm = []
        for scale in pool_scales:
            self.ppm.append(
                nn.Sequential(
                    nn.AdaptiveAvgPool2d(scale),
                    nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
                    SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True)))
        self.ppm = nn.ModuleList(self.ppm)
        self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1)

        self.conv_last = nn.Sequential(
            nn.Conv2d(fc_dim + len(pool_scales) * 512,
                      512,
                      kernel_size=3,
                      padding=1,
                      bias=False), SynchronizedBatchNorm2d(512),
            nn.ReLU(inplace=True), nn.Dropout2d(0.1),
            nn.Conv2d(512, num_class, kernel_size=1))
        self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
        self.dropout_deepsup = nn.Dropout2d(0.1)
Example #3
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.bn1 = SynchronizedBatchNorm2d(planes)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     self.bn2 = SynchronizedBatchNorm2d(planes)
     self.downsample = downsample
     self.stride = stride
Example #4
0
 def __init__(self, inplanes, planes, stride=1, groups=1, downsample=None):
     super(GroupBottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.bn1 = SynchronizedBatchNorm2d(planes)
     self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                            padding=1, groups=groups, bias=False)
     self.bn2 = SynchronizedBatchNorm2d(planes)
     self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1, bias=False)
     self.bn3 = SynchronizedBatchNorm2d(planes * 2)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Example #5
0
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = round(inp * expand_ratio)
        self.use_res_connect = self.stride == 1 and inp == oup

        if expand_ratio == 1:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim,
                          hidden_dim,
                          3,
                          stride,
                          1,
                          groups=hidden_dim,
                          bias=False),
                SynchronizedBatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                SynchronizedBatchNorm2d(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                SynchronizedBatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # dw
                nn.Conv2d(hidden_dim,
                          hidden_dim,
                          3,
                          stride,
                          1,
                          groups=hidden_dim,
                          bias=False),
                SynchronizedBatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                SynchronizedBatchNorm2d(oup),
            )
Example #6
0
    def __init__(self,
                 num_class=150,
                 fc_dim=4096,
                 use_softmax=False,
                 pool_scales=(1, 2, 3, 6),
                 fpn_inplanes=(256, 512, 1024, 2048),
                 fpn_dim=256):
        super(UPerNet, self).__init__()
        self.use_softmax = use_softmax

        # PPM Module
        self.ppm_pooling = []
        self.ppm_conv = []

        for scale in pool_scales:
            self.ppm_pooling.append(nn.AdaptiveAvgPool2d(scale))
            self.ppm_conv.append(
                nn.Sequential(
                    nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
                    SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True)))
        self.ppm_pooling = nn.ModuleList(self.ppm_pooling)
        self.ppm_conv = nn.ModuleList(self.ppm_conv)
        self.ppm_last_conv = conv3x3_bn_relu(fc_dim + len(pool_scales) * 512,
                                             fpn_dim, 1)

        # FPN Module
        self.fpn_in = []
        for fpn_inplane in fpn_inplanes[:-1]:  # skip the top layer
            self.fpn_in.append(
                nn.Sequential(
                    nn.Conv2d(fpn_inplane, fpn_dim, kernel_size=1, bias=False),
                    SynchronizedBatchNorm2d(fpn_dim), nn.ReLU(inplace=True)))
        self.fpn_in = nn.ModuleList(self.fpn_in)

        self.fpn_out = []
        for i in range(len(fpn_inplanes) - 1):  # skip the top layer
            self.fpn_out.append(
                nn.Sequential(conv3x3_bn_relu(fpn_dim, fpn_dim, 1), ))
        self.fpn_out = nn.ModuleList(self.fpn_out)

        self.conv_last = nn.Sequential(
            conv3x3_bn_relu(len(fpn_inplanes) * fpn_dim, fpn_dim, 1),
            nn.Conv2d(fpn_dim, num_class, kernel_size=1))
Example #7
0
    def _make_layer(self, block, planes, blocks, stride=1, groups=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                SynchronizedBatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, groups, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=groups))

        return nn.Sequential(*layers)
Example #8
0
def conv3x3_bn_relu(in_planes, out_planes, stride=1):
    return nn.Sequential(
        conv3x3(in_planes, out_planes, stride),
        SynchronizedBatchNorm2d(out_planes),
        nn.ReLU(inplace=True),
    )
Example #9
0
def conv_1x1_bn(inp, oup):
    return nn.Sequential(nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
                         SynchronizedBatchNorm2d(oup), nn.ReLU6(inplace=True))