return labels, np.array(pred_labels)  

if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='LPR Demo')
    parser.add_argument("-image", help='image path', default='data/ccpd_weather/吉BTW976.jpg', type=str)
    args = parser.parse_args()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    lprnet = LPRNet(class_num=len(CHARS), dropout_rate=0)
    lprnet.to(device)
    lprnet.load_state_dict(torch.load('weights/Final_LPRNet_model.pth', map_location=lambda storage, loc: storage))
    lprnet.eval()
    
    STN = STNet()
    STN.to(device)
    STN.load_state_dict(torch.load('weights/Final_STN_model.pth', map_location=lambda storage, loc: storage))
    STN.eval()
    
    print("Successful to build network!")
    
    since = time.time()
    image = cv2.imread(args.image)
    im = cv2.resize(image, (94, 24), interpolation=cv2.INTER_CUBIC)
    im = (np.transpose(np.float32(im), (2, 0, 1)) - 127.5)*0.0078125
    data = torch.from_numpy(im).float().unsqueeze(0).to(device)  # torch.Size([1, 3, 24, 94]) 
    transfer = STN(data)
    preds = lprnet(transfer)
    preds = preds.cpu().detach().numpy()  # (1, 68, 18)
    
Example #2
0
        help='image path',
        default=
        '/media/cbpm2016/D/liaolong/alpr/License_Plate_Detection_Pytorch/data/plate_test/152L393.png',
        type=str)
    args = parser.parse_args()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    lprnet = LPRNet(class_num=len(CHARS), dropout_rate=0)
    lprnet.to(device)
    lprnet.load_state_dict(
        torch.load(
            '/media/cbpm2016/D/liaolong/alpr/License_Plate_Detection_Pytorch/LPRNet/saving_ckpt/lprnet_epoch_001200_model.ckpt'
        )['net_state_dict'])
    lprnet.eval()

    STN = STNet()
    STN.to(device)
    STN.load_state_dict(
        torch.load(
            '/media/cbpm2016/D/liaolong/alpr/License_Plate_Detection_Pytorch/LPRNet/saving_ckpt/stn_epoch_001200_model.ckpt'
        )['net_state_dict'])
    STN.eval()

    print("Successful to build network!")

    since = time.time()
    image = cv2.imread(args.image)
    im = cv2.resize(image, (94, 24), interpolation=cv2.INTER_CUBIC)
    im = (np.transpose(np.float32(im), (2, 0, 1)) - 127.5) * 0.0078125
    data = torch.from_numpy(im).float().unsqueeze(0).to(
        device)  # torch.Size([1, 3, 24, 94])
if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='LPR Demo')
    parser.add_argument("-image", help='image path', default='data/ccpd_weather/吉BTW976.jpg', type=str)
    parser.add_argument("-lprnet_model", help='lprnet model', default='weights/Final_LPRNet_model.pth', type=str)
    parser.add_argument("-stn_model", help='stn model', default='weights/Final_STN_model.pth', type=str)
    args = parser.parse_args()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    lprnet = LPRNet(class_num=len(CHARS), dropout_rate=0)
    lprnet.to(device)
    lprnet.load_state_dict(torch.load(args.lprnet_model, map_location=lambda storage, loc: storage))
    lprnet.eval()
    
    STN = STNet()
    STN.to(device)
    STN.load_state_dict(torch.load(args.stn_model, map_location=lambda storage, loc: storage))
    STN.eval()
    
    print("Successful to build network!")
    
    since = time.time()
    image = cv2.imread(args.image)
    im = cv2.resize(image, (94, 24), interpolation=cv2.INTER_CUBIC)
    im = (np.transpose(np.float32(im), (2, 0, 1)) - 127.5)*0.0078125
    data = torch.from_numpy(im).float().unsqueeze(0).to(device)  # torch.Size([1, 3, 24, 94]) 
    transfer = STN(data)
    preds = lprnet(transfer)
    preds = preds.cpu().detach().numpy()  # (1, 68, 18)
    
    def weights_init(m):
        for key in m.state_dict():
            if key.split('.')[-1] == 'weight':
                if 'conv' in key:
                    nn.init.kaiming_normal_(m.state_dict()[key],
                                            mode='fan_out')
                if 'bn' in key:
                    m.state_dict()[key][...] = xavier(1)
            elif key.split('.')[-1] == 'bias':
                m.state_dict()[key][...] = 0.01

    lprnet.backbone.apply(weights_init)
    lprnet.container.apply(weights_init)
    print("initial net weights successful!")

    STN = STNet()
    STN.to(device)
    STN.load_state_dict(
        torch.load('weights/STN_model_Init.pth',
                   map_location=lambda storage, loc: storage))
    print("STN loaded")

    dataset = {
        'train': LPRDataLoader([args.img_dirs_train], args.img_size),
        'val': LPRDataLoader([args.img_dirs_val], args.img_size)
    }
    dataloader = {
        'train':
        DataLoader(dataset['train'],
                   batch_size=args.batch_size,
                   shuffle=False,