Example #1
0
def main():
	# load MNIST images
	images, labels = dataset.load_test_images()

	# config
	config = aae.config
	num_scatter = len(images)

	x, _, label_ids = dataset.sample_labeled_data(images, labels, num_scatter, config.ndim_x, config.ndim_y)
	z = aae.to_numpy(aae.encode_x_z(x, test=True))
	visualizer.plot_labeled_z(z, label_ids, dir=args.plot_dir)
def main():
    # load MNIST images
    images, labels = dataset.load_test_images()

    # config
    config = aae.config

    # settings
    num_analogies = 10
    pylab.gray()

    # generate style vector z
    x = dataset.sample_unlabeled_data(images,
                                      num_analogies,
                                      config.ndim_x,
                                      binarize=False)
    z = aae.to_numpy(aae.encode_x_z(x))

    # plot original image on the left
    for m in xrange(num_analogies):
        pylab.subplot(num_analogies, config.ndim_y + 2, m * 12 + 1)
        pylab.imshow(x[m].reshape((28, 28)), interpolation="none")
        pylab.axis("off")

    all_y = np.identity(config.ndim_y, dtype=np.float32)
    for m in xrange(num_analogies):
        # copy z as many as the number of classes
        fixed_z = np.repeat(z[m].reshape(1, -1), config.ndim_y, axis=0)
        gen_x = aae.to_numpy(aae.decode_yz_x(all_y, fixed_z))
        # plot images generated from each label
        for n in xrange(config.ndim_y):
            pylab.subplot(num_analogies, config.ndim_y + 2, m * 12 + 3 + n)
            pylab.imshow(gen_x[n].reshape((28, 28)), interpolation="none")
            pylab.axis("off")

    fig = pylab.gcf()
    fig.set_size_inches(num_analogies, config.ndim_y)
    pylab.savefig("{}/analogy.png".format(args.plot_dir))
Example #3
0
def main():
    # load MNIST images
    train_images, train_labels = dataset.load_train_images()

    # config
    config = aae.config

    # settings
    # _l -> labeled
    # _u -> unlabeled
    max_epoch = 1000
    num_trains_per_epoch = 5000
    batchsize = 100
    alpha = 1

    # seed
    np.random.seed(args.seed)
    if args.gpu_device != -1:
        cuda.cupy.random.seed(args.seed)

    # classification
    # 0 -> true sample
    # 1 -> generated sample
    class_true = aae.to_variable(np.zeros(batchsize, dtype=np.int32))
    class_fake = aae.to_variable(np.ones(batchsize, dtype=np.int32))

    # training
    progress = Progress()
    for epoch in xrange(1, max_epoch):
        progress.start_epoch(epoch, max_epoch)
        sum_loss_reconstruction = 0
        sum_loss_discriminator = 0
        sum_loss_generator = 0

        for t in xrange(num_trains_per_epoch):
            # sample from data distribution
            images_l, label_onehot_l, label_ids_l = dataset.sample_labeled_data(
                train_images, train_labels, batchsize)

            # reconstruction phase
            z_l = aae.encode_x_z(images_l)
            reconstruction_l = aae.decode_yz_x(label_onehot_l, z_l)
            loss_reconstruction = F.mean_squared_error(
                aae.to_variable(images_l), reconstruction_l)
            aae.backprop_generator(loss_reconstruction)
            aae.backprop_decoder(loss_reconstruction)

            # adversarial phase
            images_l = dataset.sample_labeled_data(train_images, train_labels,
                                                   batchsize)[0]
            z_fake_l = aae.encode_x_z(images_l)
            z_true_l = sampler.gaussian(batchsize,
                                        config.ndim_z,
                                        mean=0,
                                        var=1)
            dz_true = aae.discriminate_z(z_true_l, apply_softmax=False)
            dz_fake = aae.discriminate_z(z_fake_l, apply_softmax=False)
            loss_discriminator = F.softmax_cross_entropy(
                dz_true, class_true) + F.softmax_cross_entropy(
                    dz_fake, class_fake)
            aae.backprop_discriminator(loss_discriminator)

            # adversarial phase
            images_l = dataset.sample_labeled_data(train_images, train_labels,
                                                   batchsize)[0]
            z_fake_l = aae.encode_x_z(images_l)
            dz_fake = aae.discriminate_z(z_fake_l, apply_softmax=False)
            loss_generator = F.softmax_cross_entropy(dz_fake, class_true)
            aae.backprop_generator(loss_generator)

            sum_loss_reconstruction += float(loss_reconstruction.data)
            sum_loss_discriminator += float(loss_discriminator.data)
            sum_loss_generator += float(loss_generator.data)

            if t % 10 == 0:
                progress.show(t, num_trains_per_epoch, {})

        aae.save(args.model_dir)

        progress.show(
            num_trains_per_epoch, num_trains_per_epoch, {
                "loss_r": sum_loss_reconstruction / num_trains_per_epoch,
                "loss_d": sum_loss_discriminator / num_trains_per_epoch,
                "loss_g": sum_loss_generator / num_trains_per_epoch,
            })
Example #4
0
def main():
    # load MNIST images
    images, labels = dataset.load_train_images()

    # config
    config = aae.config

    # settings
    # _l -> labeled
    # _u -> unlabeled
    max_epoch = 1000
    num_trains_per_epoch = 5000
    batchsize_l = 100
    batchsize_u = 100
    alpha = 1

    # seed
    np.random.seed(args.seed)
    if args.gpu_device != -1:
        cuda.cupy.random.seed(args.seed)

    # create semi-supervised split
    num_labeled_data = 10000
    num_types_of_label = 11  # additional label corresponds to unlabeled data
    training_images_l, training_labels_l, training_images_u, _, _ = dataset.create_semisupervised(
        images, labels, 0, num_labeled_data, num_types_of_label)

    # classification
    # 0 -> true sample
    # 1 -> generated sample
    class_true = aae.to_variable(np.zeros(batchsize_u, dtype=np.int32))
    class_fake = aae.to_variable(np.ones(batchsize_u, dtype=np.int32))

    # training
    progress = Progress()
    for epoch in xrange(1, max_epoch):
        progress.start_epoch(epoch, max_epoch)
        sum_loss_reconstruction = 0
        sum_loss_supervised = 0
        sum_loss_discriminator = 0
        sum_loss_generator = 0

        for t in xrange(num_trains_per_epoch):
            # sample from data distribution
            images_l, label_onehot_l, label_ids_l = dataset.sample_labeled_data(
                training_images_l,
                training_labels_l,
                batchsize_l,
                ndim_y=num_types_of_label)
            images_u = dataset.sample_unlabeled_data(training_images_u,
                                                     batchsize_u)

            # reconstruction phase
            z_u = aae.encode_x_z(images_u)
            reconstruction_u = aae.decode_z_x(z_u)
            loss_reconstruction = F.mean_squared_error(
                aae.to_variable(images_u), reconstruction_u)
            aae.backprop_generator(loss_reconstruction)
            aae.backprop_decoder(loss_reconstruction)

            # adversarial phase
            z_fake_u = aae.encode_x_z(images_u)
            z_fake_l = aae.encode_x_z(images_l)
            onehot = np.zeros((1, num_types_of_label), dtype=np.float32)
            onehot[0, -1] = 1  # turn on the extra class
            label_onehot_u = np.repeat(onehot, batchsize_u, axis=0)
            z_true_l = sampler.supervised_gaussian_mixture(
                batchsize_l, config.ndim_z, label_ids_l,
                num_types_of_label - 1)
            z_true_u = sampler.gaussian_mixture(batchsize_u, config.ndim_z,
                                                num_types_of_label - 1)
            dz_true_l = aae.discriminate_z(label_onehot_l,
                                           z_true_l,
                                           apply_softmax=False)
            dz_true_u = aae.discriminate_z(label_onehot_u,
                                           z_true_u,
                                           apply_softmax=False)
            dz_fake_l = aae.discriminate_z(label_onehot_l,
                                           z_fake_l,
                                           apply_softmax=False)
            dz_fake_u = aae.discriminate_z(label_onehot_u,
                                           z_fake_u,
                                           apply_softmax=False)
            loss_discriminator = F.softmax_cross_entropy(
                dz_true_l, class_true) + F.softmax_cross_entropy(
                    dz_true_u, class_true) + F.softmax_cross_entropy(
                        dz_fake_l, class_fake) + F.softmax_cross_entropy(
                            dz_fake_u, class_fake)
            aae.backprop_discriminator(loss_discriminator)

            # adversarial phase
            z_fake_u = aae.encode_x_z(images_u)
            z_fake_l = aae.encode_x_z(images_l)
            dz_fake_l = aae.discriminate_z(label_onehot_l,
                                           z_fake_l,
                                           apply_softmax=False)
            dz_fake_u = aae.discriminate_z(label_onehot_u,
                                           z_fake_u,
                                           apply_softmax=False)
            loss_generator = F.softmax_cross_entropy(
                dz_fake_l, class_true) + F.softmax_cross_entropy(
                    dz_fake_u, class_true)
            aae.backprop_generator(loss_generator)

            sum_loss_reconstruction += float(loss_reconstruction.data)
            sum_loss_discriminator += float(loss_discriminator.data)
            sum_loss_generator += float(loss_generator.data)

            if t % 10 == 0:
                progress.show(t, num_trains_per_epoch, {})

        aae.save(args.model_dir)

        progress.show(
            num_trains_per_epoch, num_trains_per_epoch, {
                "loss_r": sum_loss_reconstruction / num_trains_per_epoch,
                "loss_d": sum_loss_discriminator / num_trains_per_epoch,
                "loss_g": sum_loss_generator / num_trains_per_epoch,
            })
Example #5
0
def main():
	images, labels = dataset.load_test_images()
	num_scatter = len(images)
	x, _, label_ids = dataset.sample_labeled_data(images, labels, num_scatter)
	z = aae.to_numpy(aae.encode_x_z(x, test=True))
	plot.scatter_labeled_z(z, label_ids, dir=args.plot_dir)