# In[4]: tf.reset_default_graph() batch_size = tf.placeholder_with_default(16, [], name='batch_size') (input_op, seq_len, label), input_prods = data.ops.get_even_batch_producer(paths=paths, batch_size=batch_size) # In[5]: cnn_params = { 'out_dims': [256, 256, 256, 128], 'kernel_sizes': 64, 'pool_sizes': 1 } c = cnn.model(seq_len=seq_len, input_op=input_op, **cnn_params) #a = tf.transpose(c.output, perm=[0, 2, 1]) #a = tf.nn.top_k(a, k=8, sorted=False, name='MAX_POOL').values #a = tf.transpose(a, perm=[0, 2, 1]) a = tf.reduce_mean(c.output, axis=1) fc = classifier.model(input_op=a, fc_sizes=[]) logits = fc.logits pred = fc.pred MODEL_PATH = '/tmp/balanced/' + c.name + fc.name MODEL_EXISTS = os.path.exists(MODEL_PATH) if MODEL_EXISTS: print('Model directory is not empty, removing old files') shutil.rmtree(MODEL_PATH)
data /= data.std() # ### Set up predictor print('Building model graph...') tf.reset_default_graph() batch_size = tf.placeholder_with_default(1, [], name='batch_size') keep_prob = tf.placeholder_with_default(1., [], name='keep_prob') input_op = tf.placeholder(tf.float32, [1, None]) seq_len = tf.placeholder(tf.float32, [1]) cnn_params = {'out_dims': [32, 64, 64], 'kernel_sizes': 64, 'pool_sizes': 1} c = cnn.model(seq_len=seq_len, input_op=input_op, keep_prob=keep_prob, model_name='CNN_block', **cnn_params) RESIDUAL_POOL = 4 residual_input = c.output[..., None, :] for i in range(1, 4): residual_input = tf.contrib.layers.max_pool2d( residual_input, kernel_size=[RESIDUAL_POOL, 1], stride=[RESIDUAL_POOL, 1]) c = cnn.model(seq_len=seq_len, input_op=residual_input, residual=True,