Example #1
0
    def __init__(self, scale_list, model_path = 'weight/EDSR_weight.pt' ):
        super(EDSR, self).__init__()
        
        # args
        scale = scale_list[0]
        input_channel = 5 
        output_channel = 3
        num_block = 16 
        inp = 64
        rgb_range = 255 
        res_scale = 0.1
        act = nn.ReLU(True)
        #act = nn.LeakyReLU(negative_slope=0.05, inplace=True)

        # head
        self.head = nn.Sequential( common.conv(3, inp, input_channel) )

        # body
        self.body = nn.Sequential( *[ common.ResBlock(inp, bias = True, act = act, res_scale = res_scale) for _ in range( num_block) ] )
        self.body.add_module( str(num_block), common.conv(inp, inp, 3) )
        
        # tail
        if scale > 1:
            self.tail = nn.Sequential( *[ common.Upsampler(scale, inp, act = False, choice = 0), 
                    common.conv(inp, 3, output_channel) ] )
        else:
            self.tail = nn.Sequential( *[ common.conv(inp, 3, output_channel) ] )

        self.sub_mean = common.MeanShift(rgb_range, sign = -1)
        self.add_mean = common.MeanShift(rgb_range, sign = 1)
        
        self.model_path = model_path 
        self.load()
Example #2
0
 def __init__(self, args):
     super().__init__()
     n_resgroup = args.n_resgroups
     n_feats = args.n_feats
     colors = 3
     out_dim = 120  # MoL
     use_checkpoint = args.checkpoint
     self.stages = args.stages
     # input = lr + masked_hr + mask [+ vq_latent]
     self.head = conv(colors * 2 + 1, n_feats)
     self.fuse = conv(n_feats * 2, n_feats, kernel_size=1, bias=False)
     self.stage_embedding = nn.Embedding(args.stages, n_feats)
     self.body_nl_low = _ResGroup(n_feats,
                                  is_nonlocal=True,
                                  use_checkpoint=use_checkpoint)
     self.body = nn.ModuleList(
         [_ResGroup(n_feats) for _ in range(n_resgroup - 2)])
     self.body_tail = conv(n_feats, n_feats)
     self.body_nl_high = _ResGroup(n_feats,
                                   is_nonlocal=True,
                                   use_checkpoint=use_checkpoint)
     self.tail = conv(n_feats, out_dim)
     if args.position_encoding:
         self.position_encoding = nn.Parameter(
             torch.zeros(args.stages, n_feats))
     else:
         self.position_encoding = None
Example #3
0
  def __init__(self,
               inplanes,
               planes,
               stride=1,
               dilation=1,
               downsample=None,
               conv_type=ConvType.HYPERCUBE,
               bn_momentum=0.1,
               D=3):
    super(BasicBlockBase, self).__init__()

    self.conv1 = conv(
        inplanes, planes, kernel_size=3, stride=stride, dilation=dilation, conv_type=conv_type, D=D)
    self.norm1 = get_norm(self.NORM_TYPE, planes, D, bn_momentum=bn_momentum)
    self.conv2 = conv(
        planes,
        planes,
        kernel_size=3,
        stride=1,
        dilation=dilation,
        bias=False,
        conv_type=conv_type,
        D=D)
    self.norm2 = get_norm(self.NORM_TYPE, planes, D, bn_momentum=bn_momentum)
    self.relu = MinkowskiReLU(inplace=True)
    self.downsample = downsample
Example #4
0
    def network_initialization(self, in_channels, out_channels, D):
        def space_n_time_m(n, m):
            return n if D == 3 else [n, n, n, m]

        if D == 4:
            self.OUT_PIXEL_DIST = space_n_time_m(self.OUT_PIXEL_DIST, 1)

        dilations = [1, 1, 1, 1]
        bn_momentum = 0.02
        self.inplanes = self.INIT_DIM
        self.conv1 = conv(in_channels,
                          self.inplanes,
                          kernel_size=space_n_time_m(3, 1),
                          stride=1,
                          D=D)

        self.bn1 = get_norm(NormType.BATCH_NORM,
                            self.inplanes,
                            D=self.D,
                            bn_momentum=bn_momentum)
        self.relu = ME.MinkowskiReLU(inplace=True)
        self.pool = sum_pool(kernel_size=space_n_time_m(2, 1),
                             stride=space_n_time_m(2, 1),
                             D=D)

        self.layer1 = self._make_layer(self.BLOCK,
                                       self.PLANES[0],
                                       self.LAYERS[0],
                                       stride=space_n_time_m(2, 1),
                                       dilation=space_n_time_m(
                                           dilations[0], 1))
        self.layer2 = self._make_layer(self.BLOCK,
                                       self.PLANES[1],
                                       self.LAYERS[1],
                                       stride=space_n_time_m(2, 1),
                                       dilation=space_n_time_m(
                                           dilations[1], 1))
        self.layer3 = self._make_layer(self.BLOCK,
                                       self.PLANES[2],
                                       self.LAYERS[2],
                                       stride=space_n_time_m(2, 1),
                                       dilation=space_n_time_m(
                                           dilations[2], 1))
        self.layer4 = self._make_layer(self.BLOCK,
                                       self.PLANES[3],
                                       self.LAYERS[3],
                                       stride=space_n_time_m(2, 1),
                                       dilation=space_n_time_m(
                                           dilations[3], 1))

        self.final = conv(self.PLANES[3] * self.BLOCK.expansion,
                          out_channels,
                          kernel_size=1,
                          bias=True,
                          D=D)
Example #5
0
    def __init__(self, scale_list, model_path='weight/MDSR_weight.pt'):
        super(MDSR, self).__init__()

        # args
        self.scale_list = scale_list
        input_channel = 3
        output_channel = 3
        num_block = 32
        inp = 64
        rgb_range = 255
        res_scale = 0.1
        act = nn.ReLU(True)
        #act = nn.LeakyReLU(negative_slope=0.05, inplace=True)

        # head
        self.head = nn.Sequential(common.conv(3, inp, input_channel))

        # pre_process
        self.pre_process = nn.ModuleDict([
            str(scale),
            nn.Sequential(
                common.ResBlock(inp, bias=True, act=act, res_scale=res_scale),
                common.ResBlock(inp, bias=True, act=act, res_scale=res_scale))
        ] for scale in self.scale_list)

        # body
        self.body = nn.Sequential(*[
            common.ResBlock(inp, bias=True, act=act, res_scale=res_scale)
            for _ in range(num_block)
        ])
        self.body.add_module(str(num_block), common.conv(inp, inp, 3))

        #upsample
        self.upsample = nn.ModuleDict(
            [str(scale),
             common.Upsampler(scale, inp, act=False, choice=0)]
            for scale in self.scale_list)

        # tail
        self.tail = nn.Sequential(common.conv(inp, 3, output_channel))

        self.sub_mean = common.MeanShift(rgb_range, sign=-1)
        self.add_mean = common.MeanShift(rgb_range, sign=1)

        self.model_path = model_path
        self.load()
Example #6
0
    def forward(self, inputs):
        with tf.variable_scope('backbone_Darknet53'):
            # [19, 19, 512], [38, 38, 512], [78, 78, 256]
            route_19, route_38, route_76 = self.backbone(
                inputs, self.batch_norm_params, self.weight_decay)
        with tf.variable_scope('yolov4_head'):
            with slim.arg_scope([slim.conv2d],
                                normalizer_fn=slim.batch_norm,
                                normalizer_params=self.batch_norm_params,
                                activation_fn=lambda x: tf.nn.leaky_relu(x),
                                weights_refularizer=slim.l2_regularizer(
                                    self.weight_decay)):
                # feature_map_76
                fpn_19 = upsample_block(route_19, 256)
                route_38 = conv(route_38, 256)
                route_38 = tf.concat([route_38, fpn_19], axis=-1)
                route_38 = cbl_block(route_38, 256)
                fpn_38 = upsample_block(route_38, 128)
                route_76 = conv(route_76, 128)
                route_76 = tf.concat([route_76, fpn_38], axis=-1)
                route_76 = cbl_block(route_76, 128)
                pan_76 = route_76
                feature_76 = conv(route_76, 256)

                # feature_map_38
                pan_76 = conv(pan_76, 256, down_sample=True)
                route_38 = tf.concat([route_38, pan_76], axis=-1)
                route_38 = cbl_block(route_38, 256)
                pan_38 = route_38
                feature_38 = conv(route_38, 512)

                # feature_map_19
                pan_38 = conv(pan_38, 512, down_sample=True)
                route_19 = tf.concat([route_19, pan_38], axis=-1)
                route_19 = cbl_block(route_19, 512)
                feature_19 = (route_19, 1024)
            feature_19 = slim.conv2d(feature_19,
                                     3 * (4 + 1 + self.class_num),
                                     1,
                                     stride=1,
                                     normalizer_fn=None,
                                     activation_fn=None,
                                     biases_initializer=tf.zeros_initializer())
            feature_38 = slim.conv2d(feature_38,
                                     3 * (4 + 1 + self.class_num),
                                     1,
                                     stride=1,
                                     normalizer_fn=None,
                                     activation_fn=None,
                                     biases_initializer=tf.zeros_initializer())
            feature_76 = slim.conv2d(feature_76,
                                     3 * (4 + 1 + self.class_num),
                                     1,
                                     stride=1,
                                     normalizer_fn=None,
                                     activation_fn=None,
                                     biases_initializer=tf.zeros_initializer())
            return feature_19, feature_38, feature_76
Example #7
0
    def __init__(self, scale_list, model_path='weight/NEWNET_weight.pt'):
        super(NewNet, self).__init__()
        
        # args
        self.scale_list = scale_list
        self.scale_list.sort()
        self.scale_list = list(set(self.scale_list))
        input_channel = 3
        output_channel = 3
        num_block_list = [6,6,6,6] 
        inp = 64
        rgb_range = 255 
        res_scale = 0.1 
        act = nn.LeakyReLU(negative_slope=0.05, inplace=True)

        # head
        self.head = nn.Sequential( common.conv(3, inp, input_channel) )

        # body
        self.body = nn.ModuleDict([
                    [ str(scale), nn.Sequential( *[ common.ResBlock(inp, bias = True, act = act, res_scale = res_scale) for _ in range(num_block_list[scale - 1] ) ] ) ] for scale in scale_list
               ])

        #upsample
        self.upsample = nn.ModuleDict([
                    [ str(scale), common.Upsampler(scale, inp, act = False, choice = 0) ] for scale in self.scale_list
                ])

        # tail
        self.tail = nn.ModuleDict([
                    [ str(scale), common.conv(inp, 3, input_channel) ] for scale in self.scale_list
                ])

        self.sub_mean = common.MeanShift(rgb_range, sign = -1)
        self.add_mean = common.MeanShift(rgb_range, sign = 1)
        
        self.model_path = model_path
        self.load()
Example #8
0
    def _make_layer(self,
                    block,
                    planes,
                    blocks,
                    stride=1,
                    dilation=1,
                    norm_type=NormType.BATCH_NORM,
                    bn_momentum=0.1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv(self.inplanes,
                     planes * block.expansion,
                     kernel_size=1,
                     stride=stride,
                     bias=False,
                     D=self.D),
                get_norm(norm_type,
                         planes * block.expansion,
                         D=self.D,
                         bn_momentum=bn_momentum),
            )
        layers = []
        layers.append(
            block(self.inplanes,
                  planes,
                  stride=stride,
                  dilation=dilation,
                  downsample=downsample,
                  conv_type=self.CONV_TYPE,
                  D=self.D))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(self.inplanes,
                      planes,
                      stride=1,
                      dilation=dilation,
                      conv_type=self.CONV_TYPE,
                      D=self.D))

        return nn.Sequential(*layers)
Example #9
0
    def backbone(self, inputs, batch_norm_params, weight_decay):
        # =============== Mish activation ===============
        with slim.arg_scope(
            [slim.conv2d],
                normalizer_fn=slim.batch_norm,
                normalizer_params=batch_norm_params,
                activation_fn=Mish,  # TODO: Mish func
                weights_refularizer=slim.l2_regularizer(weight_decay)):
            # CBM
            net = conv(inputs, 32)
            # CSP1
            net = csp_block(net, 32, res_block_sum=1, double_channels=True)
            # CSP2
            net = csp_block(net, 64, res_block_sum=2, double_channels=False)
            # CSP8, feature_map_76
            net = csp_block(net, 128, res_block_sum=8, double_channels=False)
            route_76 = net
            # CSP8, feature_map_38
            net = csp_block(net, 256, res_block_sum=8, double_channels=False)
            route_38 = net
            # CSP4
            net = csp_block(net, 512, res_block_sum=4, double_channels=False)

        # =============== LeakyRelu activation ===============
        with slim.arg_scope(
            [slim.conv2d],
                normalizer_fn=slim.batch_norm,
                normalizer_params=batch_norm_params,
                activation_fn=lambda input: tf.nn.leaky_relu(input),
                weights_refularizer=slim.l2_regularizer(weight_decay)):
            # CBL * 3
            net = conv(net, 512, kernel_size=1)
            net = conv(net, 1024)
            net = conv(net, 512, kernel_size=1)
            # SPP, shape:[19, 19, 1024]
            net = spp_block(net)
            # CBL * 3, feature_map_19
            net = conv(net, 512, kernel_size=1)
            net = conv(net, 1024)
            route_19 = conv(net, 512, kernel_size=1)
        return route_19, route_38, route_76
Example #10
0
 def __init__(self, n_feats, is_nonlocal=False, use_checkpoint=True):
     super().__init__()
     self.block = ResAttModuleDownUpPlus(n_feats, is_nonlocal,
                                         use_checkpoint)
     self.tail = conv(n_feats, n_feats)
Example #11
0
    def network_initialization(self, in_channels, out_channels, D):
        # Setup net_metadata
        dilations = self.DILATIONS
        bn_momentum = 0.02

        def space_n_time_m(n, m):
            return n if D == 3 else [n, n, n, m]

        if D == 4:
            self.OUT_PIXEL_DIST = space_n_time_m(self.OUT_PIXEL_DIST, 1)

        # Output of the first conv concated to conv6
        self.inplanes = self.INIT_DIM
        self.conv0p1s1 = conv(in_channels,
                              self.inplanes,
                              kernel_size=space_n_time_m(3, 1),
                              stride=1,
                              dilation=1,
                              conv_type=self.NON_BLOCK_CONV_TYPE,
                              D=D)

        self.bn0 = get_norm(self.NORM_TYPE,
                            self.inplanes,
                            D,
                            bn_momentum=bn_momentum)

        self.conv1p1s2 = conv(self.inplanes,
                              self.inplanes,
                              kernel_size=space_n_time_m(2, 1),
                              stride=space_n_time_m(2, 1),
                              dilation=1,
                              conv_type=self.NON_BLOCK_CONV_TYPE,
                              D=D)
        self.bn1 = get_norm(self.NORM_TYPE,
                            self.inplanes,
                            D,
                            bn_momentum=bn_momentum)
        self.block1 = self._make_layer(self.BLOCK,
                                       self.PLANES[0],
                                       self.LAYERS[0],
                                       dilation=dilations[0],
                                       norm_type=self.NORM_TYPE,
                                       bn_momentum=bn_momentum)

        self.conv2p2s2 = conv(self.inplanes,
                              self.inplanes,
                              kernel_size=space_n_time_m(2, 1),
                              stride=space_n_time_m(2, 1),
                              dilation=1,
                              conv_type=self.NON_BLOCK_CONV_TYPE,
                              D=D)
        self.bn2 = get_norm(self.NORM_TYPE,
                            self.inplanes,
                            D,
                            bn_momentum=bn_momentum)
        self.block2 = self._make_layer(self.BLOCK,
                                       self.PLANES[1],
                                       self.LAYERS[1],
                                       dilation=dilations[1],
                                       norm_type=self.NORM_TYPE,
                                       bn_momentum=bn_momentum)

        self.conv3p4s2 = conv(self.inplanes,
                              self.inplanes,
                              kernel_size=space_n_time_m(2, 1),
                              stride=space_n_time_m(2, 1),
                              dilation=1,
                              conv_type=self.NON_BLOCK_CONV_TYPE,
                              D=D)
        self.bn3 = get_norm(self.NORM_TYPE,
                            self.inplanes,
                            D,
                            bn_momentum=bn_momentum)
        self.block3 = self._make_layer(self.BLOCK,
                                       self.PLANES[2],
                                       self.LAYERS[2],
                                       dilation=dilations[2],
                                       norm_type=self.NORM_TYPE,
                                       bn_momentum=bn_momentum)

        self.conv4p8s2 = conv(self.inplanes,
                              self.inplanes,
                              kernel_size=space_n_time_m(2, 1),
                              stride=space_n_time_m(2, 1),
                              dilation=1,
                              conv_type=self.NON_BLOCK_CONV_TYPE,
                              D=D)
        self.bn4 = get_norm(self.NORM_TYPE,
                            self.inplanes,
                            D,
                            bn_momentum=bn_momentum)
        self.block4 = self._make_layer(self.BLOCK,
                                       self.PLANES[3],
                                       self.LAYERS[3],
                                       dilation=dilations[3],
                                       norm_type=self.NORM_TYPE,
                                       bn_momentum=bn_momentum)
        self.convtr4p16s2 = conv_tr(self.inplanes,
                                    self.PLANES[4],
                                    kernel_size=space_n_time_m(2, 1),
                                    upsample_stride=space_n_time_m(2, 1),
                                    dilation=1,
                                    bias=False,
                                    conv_type=self.NON_BLOCK_CONV_TYPE,
                                    D=D)
        self.bntr4 = get_norm(self.NORM_TYPE,
                              self.PLANES[4],
                              D,
                              bn_momentum=bn_momentum)

        self.inplanes = self.PLANES[4] + self.PLANES[2] * self.BLOCK.expansion
        self.block5 = self._make_layer(self.BLOCK,
                                       self.PLANES[4],
                                       self.LAYERS[4],
                                       dilation=dilations[4],
                                       norm_type=self.NORM_TYPE,
                                       bn_momentum=bn_momentum)
        self.convtr5p8s2 = conv_tr(self.inplanes,
                                   self.PLANES[5],
                                   kernel_size=space_n_time_m(2, 1),
                                   upsample_stride=space_n_time_m(2, 1),
                                   dilation=1,
                                   bias=False,
                                   conv_type=self.NON_BLOCK_CONV_TYPE,
                                   D=D)
        self.bntr5 = get_norm(self.NORM_TYPE,
                              self.PLANES[5],
                              D,
                              bn_momentum=bn_momentum)

        self.inplanes = self.PLANES[5] + self.PLANES[1] * self.BLOCK.expansion
        self.block6 = self._make_layer(self.BLOCK,
                                       self.PLANES[5],
                                       self.LAYERS[5],
                                       dilation=dilations[5],
                                       norm_type=self.NORM_TYPE,
                                       bn_momentum=bn_momentum)
        self.convtr6p4s2 = conv_tr(self.inplanes,
                                   self.PLANES[6],
                                   kernel_size=space_n_time_m(2, 1),
                                   upsample_stride=space_n_time_m(2, 1),
                                   dilation=1,
                                   bias=False,
                                   conv_type=self.NON_BLOCK_CONV_TYPE,
                                   D=D)
        self.bntr6 = get_norm(self.NORM_TYPE,
                              self.PLANES[6],
                              D,
                              bn_momentum=bn_momentum)

        self.inplanes = self.PLANES[6] + self.PLANES[0] * self.BLOCK.expansion
        self.block7 = self._make_layer(self.BLOCK,
                                       self.PLANES[6],
                                       self.LAYERS[6],
                                       dilation=dilations[6],
                                       norm_type=self.NORM_TYPE,
                                       bn_momentum=bn_momentum)
        self.convtr7p2s2 = conv_tr(self.inplanes,
                                   self.PLANES[7],
                                   kernel_size=space_n_time_m(2, 1),
                                   upsample_stride=space_n_time_m(2, 1),
                                   dilation=1,
                                   bias=False,
                                   conv_type=self.NON_BLOCK_CONV_TYPE,
                                   D=D)
        self.bntr7 = get_norm(self.NORM_TYPE,
                              self.PLANES[7],
                              D,
                              bn_momentum=bn_momentum)

        self.inplanes = self.PLANES[7] + self.INIT_DIM
        self.block8 = self._make_layer(self.BLOCK,
                                       self.PLANES[7],
                                       self.LAYERS[7],
                                       dilation=dilations[7],
                                       norm_type=self.NORM_TYPE,
                                       bn_momentum=bn_momentum)

        self.final = conv(self.PLANES[7],
                          out_channels,
                          kernel_size=1,
                          stride=1,
                          bias=True,
                          D=D)
        self.relu = MinkowskiReLU(inplace=True)