print('Using config:') pprint.pprint(cfg) np.random.seed(cfg.RNG_SEED) # train set imdb, roidb = combined_roidb(args.imdb_name) print('{:d} roidb entries'.format(len(roidb))) # output directory where the models are saved output_dir = get_output_dir(imdb, args.tag) print('Output will be saved to `{:s}`'.format(output_dir)) # tensorboard directory where the summaries are saved during training tb_dir = get_output_tb_dir(imdb, args.tag) print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir)) # also add the validation set, but with no flipping images orgflip = cfg.TRAIN.USE_FLIPPED orgnoise=cfg.TRAIN.USE_NOISE_AUG orgjpg=cfg.TRAIN.USE_JPG_AUG cfg.TRAIN.USE_FLIPPED = False cfg.TRAIN.USE_NOISE_AUG=False cfg.TRAIN.USE_JPG_AUG=False _, valroidb = combined_roidb(args.imdbval_name) print('{:d} validation roidb entries'.format(len(valroidb))) cfg.TRAIN.USE_FLIPPED = orgflip cfg.TRAIN.USE_NOISE_AUG = orgnoise cfg.TRAIN.USE_JPG_AUG=orgjpg
print('Using config:') pprint.pprint(cfg) np.random.seed(cfg.RNG_SEED) # train set imdb, roidb = combined_roidb(args.imdb_name) print('{:d} roidb entries'.format(len(roidb))) # output directory where the models are saved output_dir = get_output_dir(imdb, args.tag) print('Output will be saved to `{:s}`'.format(output_dir)) # tensorboard directory where the summaries are saved during training tb_dir = get_output_tb_dir(imdb, args.tag) print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir)) # also add the validation set, but with no flipping images orgflip = cfg.TRAIN.USE_FLIPPED cfg.TRAIN.USE_FLIPPED = False _, valroidb = combined_roidb(args.imdbval_name) print('{:d} validation roidb entries'.format(len(valroidb))) cfg.TRAIN.USE_FLIPPED = orgflip # load network if args.net == 'vgg16': net = vgg16() elif args.net == 'res50': net = resnetv1(num_layers=50) elif args.net == 'res101':
print('Using config:') pprint.pprint(cfg) np.random.seed(cfg.RNG_SEED) # train set imdb, roidb = combined_roidb(imdb_name) print('{:d} roidb entries'.format(len(roidb))) # output directory where the models are saved output_dir = get_output_dir(imdb, tag) print('Output will be saved to `{:s}`'.format(output_dir)) # tensorboard directory where the summaries are saved during training tb_dir = get_output_tb_dir(imdb, tag) print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir)) # also add the validation set, but with no flipping images orgflip = cfg.TRAIN.USE_FLIPPED cfg.TRAIN.USE_FLIPPED = True _, valroidb = combined_roidb(imdbval_name) print('{:d} validation roidb entries'.format(len(valroidb))) cfg.TRAIN.USE_FLIPPED = orgflip # load network if net == 'vgg16': net = vgg16() elif net == 'res50': net = resnetv1(num_layers=50) elif net == 'res101':