def main(argv=None):
    # Configurations
    config = Config()
    config.DATA_DIR = [
        './data/SiW_M_Makeup_Ob_Binary_Files',
        './data/SiW_M_Mask_Silicone_Binary_Files',
        './data/SiW_M_Makeup_Co_Binary_Files',
        './data/SiW_M_Mask_Paper_Binary_Files',
        './data/SiW_M_Makeup_Im_Binary_Files',
        './data/SiW_M_Mask_Mann_Binary_Files',
        './data/SiW_M_Replay_Binary_Files',
        './data/SiW_M_Partial_Cut_Binary_Files',
        './data/SiW_M_Mask_Half_Binary_Files',
        './data/SiW_M_Partial_Funnyeye_Binary_Files',
        './data/SiW_M_Partial_Paperglass_Binary_Files',
        './data/SiW_M_Mask_Trans_Binary_Files',
        './data/SiW_M_Paper_Binary_Files', './data/SiW_M_Live_Binary_Files',
        './data/SiW_M_Live_Test_Binary_Files'
    ]
    config.DATA_DIR_LIVE = ['./data/SiW_M_Live_Binary_Files']
    config.DATA_DIR_TEST = ['./data/SiW_M_Live_Test_Binary_Files']
    config.LOG_DIR = './logs/model'
    config.MODE = 'training'
    # config.MODE = 'testing'
    config.STEPS_PER_EPOCH_VAL = 180
    config.display()

    # Get images and labels.
    # dataset_train = Dataset(config, 'train')
    # Build a Graph
    model = Model(config)

    # Train the model
    model.compile()
    model.train()
Example #2
0
def main(argv=None):
    # Configurations
    config = Config()
    config.DATA_DIR = ['/data/']
    config.LOG_DIR = './log/model'
    config.MODE = 'training'
    config.STEPS_PER_EPOCH_VAL = 180
    config.display()

    # Get images and labels.
    dataset_train = Dataset(config, 'train')
    # Build a Graph
    model = Model(config)

    # Train the model
    model.compile()
    model.train(dataset_train, None)
Example #3
0
    config.DATA_DIR = ["/home/umit/xDataset/deepFake-dat/Train_Fake_Much_1",
                       "/home/umit/xDataset/deepFake-dat/Train_Live_Much_1",
                       "/home/umit/xDataset/deepFake-dat/Train_Fake_Much_2",
                       "/home/umit/xDataset/deepFake-dat/Train_Live_Much_2",
                       "/home/umit/xDataset/deepFake-dat/Train_Fake_Much_3",
                       "/home/umit/xDataset/deepFake-dat/Train_Live_Much_3",
                       "/home/umit/xDataset/deepFake-dat/Train_Fake_Much_4",
                       "/home/umit/xDataset/deepFake-dat/Train_Live_Much_4",
                       "/home/umit/xDataset/deepFake-dat/Train_Fake_Much_5",
                       "/home/umit/xDataset/deepFake-dat/Train_Live_Much_5",
                       "/home/umit/xDataset/deepFake-dat/Train_Fake_Much_6"
                       "/home/umit/xDataset/deepFake-dat/Train_Live_Much_6",
                       "/home/umit/xDataset/deepFake-dat/Train_Fake_Much_7"]
    

    config.LOG_DIR = './log/model'
    config.MODE = 'training'
    config.STEPS_PER_EPOCH = 2000
    config.MAX_EPOCH = 1000
    config.LEARNING_RATE = 0.00001 #0.00005 #0.0001 #0.0005 #0.001
    config.BATCH_SIZE = 20
    # Validation
    config.DATA_DIR_VAL = ["/home/umit/xDataset/deepFake-dat/Train_Fake_Much_1",
                           "/home/umit/xDataset/deepFake-dat/Train_Live_Few_1"]
    config.STEPS_PER_EPOCH_VAL = 500
   
    config.display()

    # Get images and labels.
    dataset_train = Dataset(config,'train')
    #dataset_validation = Dataset(config,'validation')