Example #1
0
def main():
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)
    kernel_size = (321, 321)

    cudnn.enabled = True
    gpu = args.gpu
    np.random.seed(args.random_seed)

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes,
                              kernel_size=kernel_size)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    # load dataset
    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = np.arange(train_dataset_size)
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        # labeled data
        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=3,
                                      pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        # unlabeled data
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):
        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_adv_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):
            # train Segmentation

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi-supervised training first
            if args.lambda_semi_adv > 0 and i_iter >= args.semi_start_adv:
                try:
                    _, batch = trainloader_remain_iter.next()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.next()

                # only access to img
                images, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)

                # prediction and pooling
                pred = interp(model(images))
                pred_remain = pred.detach()

                D_out = interp(model_D(F.softmax(pred)))
                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(
                    axis=1)
                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(
                    np.bool)

                # adversarial loss
                loss_semi_adv = args.lambda_semi_adv * bce_loss(
                    D_out, make_D_label(gt_label, ignore_mask_remain))
                loss_semi_adv = loss_semi_adv / args.iter_size

                # true loss value without multiplier
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy(
                ) / args.lambda_semi_adv
                loss_semi_adv.backward()

            else:
                loss_semi_adv = None

            # train with labeled images
            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.next()

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            ignore_mask = (labels.numpy() == 255)

            # prediction + pooling
            pred = interp(model(images))
            D_out = interp(model_D(F.softmax(pred)))

            # computing loss
            loss_seg = loss_calc(pred, labels, args.gpu)
            loss_adv_pred = bce_loss(D_out,
                                     make_D_label(gt_label, ignore_mask))
            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
            ) / args.iter_size

            # train D
            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            if args.D_remain and args.lambda_semi_adv > 0:
                pred = torch.cat((pred, pred_remain), 0)
                ignore_mask = np.concatenate((ignore_mask, ignore_mask_remain),
                                             axis=0)

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()

            # train with gt
            # get gt labels
            try:
                _, batch = trainloader_gt_iter.next()
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = trainloader_gt_iter.next()

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()

        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi_adv = {5:.3f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_semi_adv_value))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(args.num_steps) + '_' +
                    str(args.random_seed) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(args.num_steps) + '_' +
                    str(args.random_seed) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(i_iter) + '_' +
                    str(args.random_seed) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(i_iter) + '_' +
                    str(args.random_seed) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Example #2
0
def main():
    # 将参数的input_size 映射到整数,并赋值,从字符串转换到整数二元组
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = False
    gpu = args.gpu

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    # 确保模型中参数的格式与要加载的参数相同
    # 返回一个字典,保存着module的所有状态(state);parameters和persistent buffers都会包含在字典中,字典的key就是parameter和buffer的 names。
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        # print (name)
        if name in saved_state_dict and param.size() == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            # print('copy {}'.format(name))
    model.load_state_dict(new_params)

    # 设置为训练模式
    model.train()
    cudnn.benchmark = True

    model.cuda(gpu)

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size,
                               scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)
    train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size,
                                    scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)
    else:
        # sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = list(range(train_dataset_size))  # ?
            np.random.shuffle(train_ids)

        pickle.dump(train_ids, open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))  # 写入文件

        train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size, sampler=train_sampler, num_workers=3, pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size, sampler=train_remain_sampler, num_workers=3,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size, sampler=train_gt_sampler, num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')  # ???

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):
        print("Iter:", i_iter)
        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if args.lambda_semi > 0 and i_iter >= args.semi_start:
                try:
                    _, batch = next(trainloader_remain_iter)
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = next(trainloader_remain_iter)

                # only access to img
                images, _, _, _ = batch

                images = Variable(images).cuda(gpu)
                # images = Variable(images).cpu()

                pred = interp(model(images))
                D_out = interp(model_D(F.softmax(pred)))

                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(axis=1)

                # produce ignore mask
                semi_ignore_mask = (D_out_sigmoid < args.mask_T)

                semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                semi_gt[semi_ignore_mask] = 255

                semi_ratio = 1.0 - float(semi_ignore_mask.sum()) / semi_ignore_mask.size
                print('semi ratio: {:.4f}'.format(semi_ratio))

                if semi_ratio == 0.0:
                    loss_semi_value += 0
                else:
                    semi_gt = torch.FloatTensor(semi_gt)

                    loss_semi = args.lambda_semi * loss_calc(pred, semi_gt, args.gpu)
                    loss_semi = loss_semi / args.iter_size
                    loss_semi.backward()
                    loss_semi_value += loss_semi.data.cpu().numpy()[0] / args.lambda_semi
            else:
                loss_semi = None

            # train with source

            try:
                _, batch = next(trainloader_iter)
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = next(trainloader_iter)

            images, labels, _, _ = batch

            images = Variable(images).cuda(gpu)
            # images = Variable(images).cpu()

            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            loss_seg = loss_calc(pred, labels, args.gpu)

            D_out = interp(model_D(F.softmax(pred)))

            loss_adv_pred = bce_loss(D_out, make_D_label(gt_label, ignore_mask))

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy()[0] / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()[0] / args.iter_size

            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]

            # train with gt
            # get gt labels
            try:
                _, batch = next(trainloader_gt_iter)
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = next(trainloader_gt_iter)

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            # D_gt_v = Variable(one_hot(labels_gt)).cpu()
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]

        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}'.format(
                i_iter, args.num_steps, loss_seg_value, loss_adv_pred_value, loss_D_value, loss_semi_value))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(model_D.state_dict(), osp.join(args.snapshot_dir, 'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(model_D.state_dict(), osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Example #3
0
def main():

    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=16,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=16,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = np.arange(train_dataset_size)
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        train_sampler_all = data.sampler.SubsetRandomSampler(train_ids)
        train_gt_sampler_all = data.sampler.SubsetRandomSampler(train_ids)
        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader_all = data.DataLoader(train_dataset,
                                          batch_size=args.batch_size,
                                          sampler=train_sampler_all,
                                          num_workers=16,
                                          pin_memory=True)
        trainloader_gt_all = data.DataLoader(train_gt_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_gt_sampler_all,
                                             num_workers=16,
                                             pin_memory=True)
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=16,
                                      pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=16,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=16,
                                         pin_memory=True)

        trainloader_remain_iter = iter(trainloader_remain)

    trainloader_all_iter = iter(trainloader_all)
    trainloader_iter = iter(trainloader)
    trainloader_gt_iter = iter(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    #y_real_, y_fake_ = Variable(torch.ones(args.batch_size, 1).cuda()), Variable(torch.zeros(args.batch_size, 1).cuda())

    for i_iter in range(args.num_steps):

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_fm_value = 0
        loss_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # train with source

            try:
                batch = next(trainloader_iter)
            except:
                trainloader_iter = iter(trainloader)
                batch = next(trainloader_iter)

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            #ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            loss_seg = loss_calc(pred, labels, args.gpu)
            loss_seg.backward()
            loss_seg_value += loss_seg.data.cpu().numpy()[0] / args.iter_size

            if i_iter >= args.adv_start:

                #fm loss calc
                try:
                    batch = next(trainloader_all_iter)
                except:
                    trainloader_iter = iter(trainloader_all)
                    batch = next(trainloader_all_iter)

                images, labels, _, _ = batch
                images = Variable(images).cuda(args.gpu)
                #ignore_mask = (labels.numpy() == 255)
                pred = interp(model(images))

                _, D_out_y_pred = model_D(F.softmax(pred))

                trainloader_gt_iter = iter(trainloader_gt)
                batch = next(trainloader_gt_iter)

                _, labels_gt, _, _ = batch
                D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
                #ignore_mask_gt = (labels_gt.numpy() == 255)

                _, D_out_y_gt = model_D(D_gt_v)

                fm_loss = torch.mean(
                    torch.abs(
                        torch.mean(D_out_y_gt, 0) -
                        torch.mean(D_out_y_pred, 0)))

                loss = loss_seg + args.lambda_fm * fm_loss

                # proper normalization
                fm_loss.backward()
                #loss_seg_value += loss_seg.data.cpu().numpy()[0]/args.iter_size
                loss_fm_value += fm_loss.data.cpu().numpy()[0] / args.iter_size
                loss_value += loss.data.cpu().numpy()[0] / args.iter_size

                # train D

                # bring back requires_grad
                for param in model_D.parameters():
                    param.requires_grad = True

                # train with pred
                pred = pred.detach()

                D_out_z, _ = model_D(F.softmax(pred))
                y_fake_ = Variable(torch.zeros(D_out_z.size(0), 1).cuda())
                loss_D_fake = criterion(D_out_z, y_fake_)

                # train with gt
                # get gt labels
                _, labels_gt, _, _ = batch
                D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
                #ignore_mask_gt = (labels_gt.numpy() == 255)

                D_out_z_gt, _ = model_D(D_gt_v)
                #D_out = interp(D_out_x)

                y_real_ = Variable(torch.ones(D_out_z_gt.size(0), 1).cuda())

                loss_D_real = criterion(D_out_z_gt, y_real_)
                loss_D = loss_D_fake + loss_D_real
                loss_D.backward()
                loss_D_value += loss_D.data.cpu().numpy()[0]

        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print('iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_D = {3:.3f}'.
              format(i_iter, args.num_steps, loss_seg_value, loss_D_value))
        print('fm_loss: ', loss_fm_value, ' g_loss: ', loss_value)

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
def main():
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu

    # create network

    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters (weights)
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(
            args.restore_from
        )  ## http://vllab1.ucmerced.edu/~whung/adv-semi-seg/resnet101COCO-41f33a49.pth
    else:
        saved_state_dict = torch.load(args.restore_from)
        #checkpoint = torch.load(args.restore_from)_

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()  # state_dict() is current model
    for name, param in new_params.items():
        #print (name) # 'conv1.weight, name:param(value), dict
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            #print('copy {}'.format(name))
    model.load_state_dict(new_params)
    #model.load_state_dict(checkpoint['state_dict'])
    #optimizer.load_state_dict(args.checkpoint['optim_dict'])

    model.train(
    )  # https://pytorch.org/docs/stable/nn.html, Sets the module in training mode.
    model.cuda(args.gpu)  ##

    cudnn.benchmark = True  # This flag allows you to enable the inbuilt cudnn auto-tuner to find the best algorithm to use for your hardware

    # init D

    model_D = FCDiscriminator(num_classes=args.num_classes)
    #args.restore_from_D = 'snapshots/linear2/VOC_25000_D.pth'
    if args.restore_from_D is not None:  # None
        model_D.load_state_dict(torch.load(args.restore_from_D))
        # checkpoint_D = torch.load(args.restore_from_D)
        # model_D.load_state_dict(checkpoint_D['state_dict'])
        # optimizer_D.load_state_dict(checkpoint_D['optim_dict'])
    model_D.train()
    model_D.cuda(args.gpu)

    if USECALI:
        model_cali = ModelWithTemperature(model, model_D)
        model_cali.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    random.seed(args.random_seed)
    np.random.seed(args.random_seed)
    torch.manual_seed(args.random_seed)
    torch.cuda.manual_seed(args.random_seed)
    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)
    train_dataset_remain = VOCDataSet(args.data_dir,
                                      args.data_list_remain,
                                      crop_size=input_size,
                                      scale=args.random_scale,
                                      mirror=args.random_mirror,
                                      mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)
    train_dataset_size_remain = len(train_dataset_remain)

    print train_dataset_size
    print train_dataset_size_remain

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)
    if args.partial_data is None:  #if not partial, load all

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        #args.partial_data = 0.125
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:  #args.partial_id is none
            train_ids = range(train_dataset_size)
            train_ids_remain = range(train_dataset_size_remain)
            np.random.shuffle(train_ids)  #shuffle!
            np.random.shuffle(train_ids_remain)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'),
                         'wb'))  #randomly suffled ids

        #sampler
        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:])  # 0~1/8,
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids_remain[:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:])
        # train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size]) # 0~1/8
        # train_remain_sampler = data.sampler.SubsetRandomSampler(train_ids[partial_size:]) # used as unlabeled, 7/8
        # train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])

        #train loader
        trainloader = data.DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            sampler=train_sampler,
            num_workers=3,
            pin_memory=True)  # multi-process data loading
        trainloader_remain = data.DataLoader(train_dataset_remain,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        # trainloader_remain = data.DataLoader(train_dataset,
        #                                      batch_size=args.batch_size, sampler=train_remain_sampler, num_workers=3,
        #                                     pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network

    # model.optim_paramters(args) = list(dict1, dict2), dict1 >> 'lr' and 'params'
    # print(type(model.optim_parameters(args)[0]['params'])) # generator
    #print(model.state_dict()['coeff'][0]) #confirmed

    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    #optimizer.add_param_group({"params":model.coeff}) # assign new coefficient to the optimizer
    #print(len(optimizer.param_groups))
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()  #initialize

    if USECALI:
        optimizer_cali = optim.LBFGS([model_cali.temperature],
                                     lr=0.01,
                                     max_iter=50)
        optimizer_cali.zero_grad()

        nll_criterion = BCEWithLogitsLoss().cuda()  # BCE!!
        ece_criterion = ECELoss().cuda()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(
        size=(input_size[1], input_size[0]), mode='bilinear'
    )  # okay it automatically change to functional.interpolate
    # 321, 321

    if version.parse(torch.__version__) >= version.parse('0.4.0'):  #0.4.1
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1
    semi_ratio_sum = 0
    semi_sum = 0
    loss_seg_sum = 0
    loss_adv_sum = 0
    loss_vat_sum = 0
    l_seg_sum = 0
    l_vat_sum = 0
    l_adv_sum = 0
    logits_list = []
    labels_list = []

    #https: // towardsdatascience.com / understanding - pytorch -with-an - example - a - step - by - step - tutorial - 81fc5f8c4e8e

    for i_iter in range(args.num_steps):

        loss_seg_value = 0  # L_seg
        loss_adv_pred_value = 0  # 0.01 L_adv
        loss_D_value = 0  # L_D
        loss_semi_value = 0  # 0.1 L_semi
        loss_semi_adv_value = 0  # 0.001 L_adv
        loss_vat_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)  #changing lr by iteration

        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            ###################### train G!!!###########################
            ############################################################
            # don't accumulate grads in D

            for param in model_D.parameters(
            ):  # <class 'torch.nn.parameter.Parameter'>, convolution weights
                param.requires_grad = False  # do not update gradient of D (freeze) while G

            ######### do unlabeled first!! 0.001 L_adv + 0.1 L_semi ###############

            # lambda_semi, lambda_adv for unlabeled
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0
                ) and i_iter >= args.semi_start_adv:
                try:
                    _, batch = trainloader_remain_iter.next(
                    )  #remain = unlabeled
                    print(trainloader_remain_iter.next())
                except:
                    trainloader_remain_iter = enumerate(
                        trainloader_remain)  # impose counters
                    _, batch = trainloader_remain_iter.next()

                # only access to img
                images, _, _, _ = batch  # <class 'torch.Tensor'>
                images = Variable(images).cuda(
                    args.gpu)  # <class 'torch.Tensor'>

                pred = interp(
                    model(images))  # S(X), pred <class 'torch.Tensor'>
                pred_remain = pred.detach(
                )  #use detach() when attempting to remove a tensor from a computation graph, will be used for D
                # https://discuss.pytorch.org/t/clone-and-detach-in-v0-4-0/16861
                # The difference is that detach refers to only a given variable on which it's called.
                # torch.no_grad affects all operations taking place within the with statement. >> for context,
                # requires_grad is for tensor

                # pred >> (8,21,321,321), L_adv
                D_out = interp(
                    model_D(F.softmax(pred))
                )  # D(S(X)), confidence, 8,1,321,321, not detached, there was not dim
                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(
                    axis=1)  # (8,321,321) 0~1

                # 0.001 L_adv!!!!
                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(
                    np.bool)  # no ignore_mask for unlabeled adv
                loss_semi_adv = args.lambda_semi_adv * bce_loss(
                    D_out, make_D_label(gt_label,
                                        ignore_mask_remain))  #gt_label =1,
                # -log(D(S(X)))
                loss_semi_adv = loss_semi_adv / args.iter_size  #normalization

                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy(
                ) / args.lambda_semi_adv

                ##--- visualization, pred(8,21,321,321), D_out_sigmoid(8,321,321)
                """
                if i_iter % 1000 == 0:
                    vpred = pred.transpose(1, 2).transpose(2, 3).contiguous()  # (8,321,321,21)
                    vpred = vpred.view(-1, 21)  # (8*321*321, 21)
                    vlogsx = F.log_softmax(vpred)  # torch.Tensor
                    vsemi_gt = pred.data.cpu().numpy().argmax(axis=1)
                    vsemi_gt = Variable(torch.FloatTensor(vsemi_gt).long()).cuda(gpu)
                    vlogsx = vlogsx.gather(1, vsemi_gt.view(-1, 1))
                    sx = F.softmax(vpred).gather(1, vsemi_gt.view(-1, 1))
                    vD_out_sigmoid = Variable(torch.FloatTensor(D_out_sigmoid)).cuda(gpu).view(-1, 1)
                    vlogsx = (vlogsx*(2.5*vD_out_sigmoid+0.5))
                    vlogsx = -vlogsx.squeeze(dim=1)
                    sx = sx.squeeze(dim=1)
                    vD_out_sigmoid = vD_out_sigmoid.squeeze(dim=1)
                    dsx = vD_out_sigmoid.data.cpu().detach().numpy()
                    vlogsx = vlogsx.data.cpu().detach().numpy()
                    sx = sx.data.cpu().detach().numpy()
                    plt.clf()
                    plt.figure(figsize=(15, 5))
                    plt.subplot(131)
                    plt.ylim(0, 0.004)
                    plt.scatter(dsx, vlogsx, s = 0.1)  # variable requires grad cannot call numpy >> detach
                    plt.xlabel('D(S(X))')
                    plt.ylabel('Loss_Semi per Pixel')
                    plt.subplot(132)
                    plt.scatter(dsx, vlogsx, s = 0.1)  # variable requires grad cannot call numpy >> detach
                    plt.xlabel('D(S(X))')
                    plt.ylabel('Loss_Semi per Pixel')
                    plt.subplot(133)
                    plt.scatter(dsx, sx, s=0.1)
                    plt.xlabel('D(S(X))')
                    plt.ylabel('S(x)')
                    plt.savefig('/home/eungyo/AdvSemiSeg/plot/'  + str(i_iter) + '.png')
                    """

                if args.lambda_semi <= 0 or i_iter < args.semi_start:
                    loss_semi_adv.backward()
                    loss_semi_value = 0
                else:

                    semi_gt = pred.data.cpu().numpy().argmax(
                        axis=1
                    )  # pred=S(X) ((8,21,321,321)), semi_gt is not one-hot, 8,321,321
                    #(8, 321, 321)

                    if not USECALI:
                        semi_ignore_mask = (
                            D_out_sigmoid < args.mask_T
                        )  # both (8,321,321) 0~1threshold!, numpy
                        semi_gt[
                            semi_ignore_mask] = 255  # Yhat, ignore pixel becomes 255
                        semi_ratio = 1.0 - float(semi_ignore_mask.sum(
                        )) / semi_ignore_mask.size  # ignored pixels / H*W
                        print('semi ratio: {:.4f}'.format(semi_ratio))

                        if semi_ratio == 0.0:
                            loss_semi_value += 0
                        else:
                            semi_gt = torch.FloatTensor(semi_gt)
                            confidence = torch.FloatTensor(
                                D_out_sigmoid)  ## added, only pred is on cuda
                            loss_semi = args.lambda_semi * weighted_loss_calc(
                                pred, semi_gt, args.gpu, confidence)

                    else:
                        semi_ratio = 1
                        semi_gt = (torch.FloatTensor(semi_gt))  # (8,321,321)
                        confidence = torch.FloatTensor(
                            F.sigmoid(
                                model_cali.temperature_scale(D_out.view(
                                    -1))).data.cpu().numpy())  # (8*321*321,)
                        loss_semi = args.lambda_semi * calibrated_loss_calc(
                            pred, semi_gt, args.gpu, confidence, accuracies,
                            n_bin
                        )  #  L_semi = Yhat * log(S(X)) # loss_calc(pred, semi_gt, args.gpu)
                        # pred(8,21,321,321)

                    if semi_ratio != 0:
                        loss_semi = loss_semi / args.iter_size
                        loss_semi_value += loss_semi.data.cpu().numpy(
                        ) / args.lambda_semi

                        if args.method == 'vatent' or args.method == 'vat':
                            #v_loss = vat_loss(model, images, pred, eps=args.epsilon[i])  # R_vadv
                            weighted_v_loss = weighted_vat_loss(
                                model,
                                images,
                                pred,
                                confidence,
                                eps=args.epsilon)

                            if args.method == 'vatent':
                                #v_loss += entropy_loss(pred)  # R_cent (conditional entropy loss)
                                weighted_v_loss += weighted_entropy_loss(
                                    pred, confidence)

                            v_loss = weighted_v_loss / args.iter_size
                            loss_vat_value += v_loss.data.cpu().numpy()
                            loss_semi_adv += args.alpha * v_loss

                            loss_vat_sum += loss_vat_value
                            if i_iter % 100 == 0 and sub_i == 4:
                                l_vat_sum = loss_vat_sum / 100
                                if i_iter == 0:
                                    l_vat_sum = l_vat_sum * 100
                                loss_vat_sum = 0

                        loss_semi += loss_semi_adv
                        loss_semi.backward(
                        )  # 0.001 L_adv + 0.1 L_semi, backward == back propagation

            else:
                loss_semi = None
                loss_semi_adv = None

            ###########train with source (labeled data)############### L_ce + 0.01 * L_adv

            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)  # safe coding
                _, batch = trainloader_iter.next()  #counter, batch

            images, labels, _, _ = batch  # also get labels images(8,321,321)
            images = Variable(images).cuda(args.gpu)
            ignore_mask = (
                labels.numpy() == 255
            )  # ignored pixels == 255 >> 1, yes ignored mask for labeled data

            pred = interp(model(images))  # S(X), 8,21,321,321
            loss_seg = loss_calc(pred, labels,
                                 args.gpu)  # -Y*logS(X)= L_ce, not detached

            if USED:
                softsx = F.softmax(pred, dim=1)
                D_out = interp(model_D(softsx))  # D(S(X)), L_adv

                loss_adv_pred = bce_loss(
                    D_out, make_D_label(
                        gt_label,
                        ignore_mask))  # both  8,1,321,321, gt_label = 1
                # L_adv =  -log(D(S(X)), make_D_label is all 1 except ignored_region

                loss = loss_seg + args.lambda_adv_pred * loss_adv_pred
                if USECALI:
                    if (args.lambda_semi > 0 or args.lambda_semi_adv > 0
                        ) and i_iter >= args.semi_start_adv:
                        with torch.no_grad():
                            _, prediction = torch.max(softsx, 1)
                            labels_mask = (
                                (labels > 0) *
                                (labels != 255)) | (prediction.data.cpu() > 0)
                            labels = labels[labels_mask]
                            prediction = prediction[labels_mask]
                            fake_mask = (labels.data.cpu().numpy() !=
                                         prediction.data.cpu().numpy())
                            real_label = make_conf_label(
                                1, fake_mask
                            )  # (10*321*321, ) 0 or 1 (fake or real)

                            logits = D_out.squeeze(dim=1)
                            logits = logits[labels_mask]
                            logits_list.append(logits)  # initialize
                            labels_list.append(real_label)

                        if (i_iter * args.iter_size * args.batch_size + sub_i +
                                1) % train_dataset_size == 0:
                            logits = torch.cat(logits_list).cuda(
                            )  # overall 5000 images in val,  #logits >> 5000,100, (1464*321*321,)
                            labels = torch.cat(labels_list).cuda()
                            before_temperature_nll = nll_criterion(
                                logits, labels).item()  ####modify
                            before_temperature_ece, _, _ = ece_criterion(
                                logits, labels)  # (1464*321*321,)
                            before_temperature_ece = before_temperature_ece.item(
                            )
                            print('Before temperature - NLL: %.3f, ECE: %.3f' %
                                  (before_temperature_nll,
                                   before_temperature_ece))

                            def eval():
                                loss_cali = nll_criterion(
                                    model_cali.temperature_scale(logits),
                                    labels)
                                loss_cali.backward()
                                return loss_cali

                            optimizer_cali.step(
                                eval)  # just one backward >> not 50 iterations
                            after_temperature_nll = nll_criterion(
                                model_cali.temperature_scale(logits),
                                labels).item()
                            after_temperature_ece, accuracies, n_bin = ece_criterion(
                                model_cali.temperature_scale(logits), labels)
                            after_temperature_ece = after_temperature_ece.item(
                            )
                            print('Optimal temperature: %.3f' %
                                  model_cali.temperature.item())
                            print(
                                'After temperature - NLL: %.3f, ECE: %.3f' %
                                (after_temperature_nll, after_temperature_ece))

                            logits_list = []
                            labels_list = []

            else:
                loss = loss_seg

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_sum += loss_seg / args.iter_size
            if USED:
                loss_adv_sum += loss_adv_pred
            if i_iter % 100 == 0 and sub_i == 4:
                l_seg_sum = loss_seg_sum / 100
                if USED:
                    l_adv_sum = loss_adv_sum / 100
                if i_iter == 0:
                    l_seg_sum = l_seg_sum * 100
                    l_adv_sum = l_adv_sum * 100
                loss_seg_sum = 0
                loss_adv_sum = 0

            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            if USED:
                loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
                ) / args.iter_size

            ##################### train D!!!###########################
            ###########################################################
            # bring back requires_grad
            if USED:
                for param in model_D.parameters():
                    param.requires_grad = True  # before False.

                ############# train with pred S(X)############# labeled + unlabeled
                pred = pred.detach(
                )  #orginally only use labeled data, freeze S(X) when train D,

                # We do train D with the unlabeled data. But the difference is quite small

                if args.D_remain:  #default true
                    pred = torch.cat(
                        (pred, pred_remain), 0
                    )  # pred_remain(unlabeled S(x)) is detached  16,21,321,321
                    ignore_mask = np.concatenate(
                        (ignore_mask, ignore_mask_remain),
                        axis=0)  # 16,321,321

                D_out = interp(
                    model_D(F.softmax(pred, dim=1))
                )  # D(S(X)) 16,1,321,321  # softmax(pred,dim=1) for 0.4, not nessesary

                loss_D = bce_loss(D_out,
                                  make_D_label(pred_label,
                                               ignore_mask))  # pred_label = 0

                # -log(1-D(S(X)))
                loss_D = loss_D / args.iter_size / 2  # iter_size = 1, /2 because there is G and D
                loss_D.backward()
                loss_D_value += loss_D.data.cpu().numpy()

                ################## train with gt################### only labeled
                #VOCGT and VOCdataset can be reduced to one dataset in this repo.
                # get gt labels Y
                #print "before train gt"
                try:
                    print(trainloader_gt_iter.next())  # len 732
                    _, batch = trainloader_gt_iter.next()

                except:
                    trainloader_gt_iter = enumerate(trainloader_gt)
                    _, batch = trainloader_gt_iter.next()
                #print "train with gt?"
                _, labels_gt, _, _ = batch
                D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)  #one_hot
                ignore_mask_gt = (labels_gt.numpy() == 255
                                  )  # same as ignore_mask (8,321,321)
                #print "finish"
                D_out = interp(model_D(D_gt_v))  # D(Y)
                loss_D = bce_loss(D_out,
                                  make_D_label(gt_label,
                                               ignore_mask_gt))  # log(D(Y))
                loss_D = loss_D / args.iter_size / 2

                loss_D.backward()
                loss_D_value += loss_D.data.cpu().numpy()

        optimizer.step()

        if USED:
            optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))  #snapshot
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.6f}, loss_semi = {5:.6f}, loss_semi_adv = {6:.3f}, loss_vat = {7: .5f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_semi_value,
                    loss_semi_adv_value, loss_vat_value))
        #                                        L_ce             L_adv for labeled      L_D                L_semi              L_adv for unlabeled
        #loss_adv should be inversely proportional to the loss_D if they are seeing the same data.
        # loss_adv_p is essentially the inverse loss of loss_D. We expect them to achieve a good balance during the adversarial training
        # loss_D is around 0.2-0.5   >> good
        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            #torch.save(state, osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth.tar'))
            #torch.save(state_D, osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth.tar'))
            break

        if i_iter % 100 == 0 and sub_i == 4:  #loss_seg_value
            wdata = "iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.6f}, loss_semi = {5:.8f}, loss_semi_adv = {6:.3f}, l_vat_sum = {7: .5f}, loss_label = {8: .4}\n".format(
                i_iter, args.num_steps, l_seg_sum, l_adv_sum, loss_D_value,
                loss_semi_value, loss_semi_adv_value, l_vat_sum,
                l_seg_sum + 0.01 * l_adv_sum)
            #wdata2 = "{0:8d} {1:s} {2:s} {3:s} {4:s} {5:s} {6:s} {7:s} {8:s}\n".format(i_iter,str(model.coeff[0])[8:14],str(model.coeff[1])[8:14],str(model.coeff[2])[8:14],str(model.coeff[3])[8:14],str(model.coeff[4])[8:14],str(model.coeff[5])[8:14],str(model.coeff[6])[8:14],str(model.coeff[7])[8:14])
            if i_iter == 0:
                f2 = open("/home/eungyo/AdvSemiSeg/snapshots/log.txt", 'w')
                f2.write(wdata)
                f2.close()
                #f3 = open("/home/eungyo/AdvSemiSeg/snapshots/coeff.txt", 'w')
                #f3.write(wdata2)
                #f3.close()
            else:
                f1 = open("/home/eungyo/AdvSemiSeg/snapshots/log.txt", 'a')
                f1.write(wdata)
                f1.close()
                #f4 = open("/home/eungyo/AdvSemiSeg/snapshots/coeff.txt", 'a')
                #f4.write(wdata2)
                #f4.close()

        if i_iter % args.save_pred_every == 0 and i_iter != 0:  # 5000
            print('taking snapshot ...')
            #state = {'epoch':i_iter, 'state_dict':model.state_dict(),'optim_dict':optimizer.state_dict()}
            #state_D = {'epoch':i_iter, 'state_dict': model_D.state_dict(), 'optim_dict': optimizer_D.state_dict()}
            #torch.save(state, osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth.tar'))
            #torch.save(state_D, osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth.tar'))
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Example #5
0
def main():
    # prepare
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    # init D
    model_D = detector.FlawDetector(in_channels=24)
    # model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = [_ for _ in range(0, train_dataset_size)]
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=3,
                                      pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    minimum_loss = detector.MinimumCriterion()
    detector_loss = detector.FlawDetectorCriterion()

    # bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):

        if i_iter > 0 and i_iter % 1000 == 0:
            val(model, args.gpu)
            model.train()

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0
                ) and i_iter >= args.semi_start_adv:
                try:
                    _, batch = trainloader_remain_iter.__next__()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.__next__()

                # only access to img
                images, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)

                pred = interp(model(images))
                pred_remain = pred.detach()

                D_out = model_D(images, pred)

                ignore_mask_remain = np.zeros(D_out.shape).astype(np.bool)
                loss_semi_adv = args.lambda_semi_adv * minimum_loss(
                    D_out)  # ke: SSL loss for unlabeled data
                loss_semi_adv = loss_semi_adv

                #loss_semi_adv.backward()
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy(
                ) / args.iter_size

                loss_semi_adv.backward()
                loss_semi_value = 0

            else:
                loss_semi = None
                loss_semi_adv = None

            # train with source (labeled data)

            try:
                _, batch = trainloader_iter.__next__()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.__next__()

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            loss_seg = loss_calc(pred, labels, args.gpu)

            D_out = interp(model_D(images, pred))

            loss_adv_pred = args.lambda_adv_pred * minimum_loss(
                D_out)  # ke: SSL loss for labeled data

            loss = loss_seg + loss_adv_pred

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
            ) / args.iter_size

            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred from labeled data
            pred = pred.detach()

            D_out = interp(model_D(images, pred))

            detect_gt = detector.generate_flaw_detector_gt(
                pred,
                labels.view(labels.shape[0], 1, labels.shape[1],
                            labels.shape[2]).cuda(args.gpu), NUM_CLASSES,
                IGNORE_LABEL)
            loss_D = detector_loss(D_out, detect_gt)

            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()

            # # train with gt
            # # get gt labels
            # try:
            #     _, batch = trainloader_gt_iter.__next__()
            # except:
            #     trainloader_gt_iter = enumerate(trainloader_gt)
            #     _, batch = trainloader_gt_iter.__next__()

            # _, labels_gt, _, _ = batch
            # D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            # ignore_mask_gt = (labels_gt.numpy() == 255)

            # D_out = interp(model_D(D_gt_v))
            # loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            # loss_D = loss_D/args.iter_size/2
            # loss_D.backward()
            # loss_D_value += loss_D.data.cpu().numpy()

        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.6f}, loss_adv_l = {3:.6f}, loss_D = {4:.6f}, loss_semi = {5:.6f}, loss_adv_u = {6:.6f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_semi_value,
                    loss_semi_adv_value))

        if i_iter >= args.num_steps - 1:
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
Example #6
0
def main():
    """Create the model and start the training."""
    w, h = map(int, args.input_size_source.split(','))
    input_size_source = (w, h)

    w, h = map(int, args.input_size_target.split(','))
    input_size_target = (w, h)

    cudnn.enabled = True

    # Create network
    if args.model == 'ResNet':
        model = Res_Deeplab(num_classes=args.num_classes)
        if args.restore_from[:4] == 'http':
            saved_state_dict = model_zoo.load_url(args.restore_from)
        else:
            saved_state_dict = torch.load(args.restore_from)

        new_params = model.state_dict().copy()
        for i in saved_state_dict:
            # Scale.layer5.conv2d_list.3.weight
            i_parts = i.split('.')
            # print i_parts
            if not args.num_classes == 19 or not i_parts[1] == 'layer5':
                new_params['.'.join(i_parts[1:])] = saved_state_dict[i]
                # print i_parts
        model.load_state_dict(new_params)

        # model.load_state_dict(saved_state_dict)

    elif args.model == 'VGG':
        model = DeeplabVGG(num_classes=args.num_classes,
                           pretrained=True,
                           vgg16_caffe_path=args.restore_from)

        # saved_state_dict = torch.load(args.restore_from)
        # model.load_state_dict(saved_state_dict)

    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    model.train()
    model.cuda(args.gpu)
    cudnn.benchmark = True

    #Discrimintator setting
    model_D = FCDiscriminator(num_classes=args.num_classes)
    model_D.train()
    model_D.cuda(args.gpu)

    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    bce_loss = torch.nn.BCEWithLogitsLoss()

    # labels for adversarial training
    source_adv_label = 0
    target_adv_label = 1

    #Dataloader
    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    trainloader = data.DataLoader(GTA5DataSet(args.translated_data_dir,
                                              args.data_list,
                                              max_iters=args.num_steps *
                                              args.iter_size * args.batch_size,
                                              crop_size=input_size_source,
                                              scale=args.random_scale,
                                              mirror=args.random_mirror,
                                              mean=IMG_MEAN),
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  num_workers=args.num_workers,
                                  pin_memory=True)

    trainloader_iter = enumerate(trainloader)

    style_trainloader = data.DataLoader(GTA5DataSet(
        args.stylized_data_dir,
        args.data_list,
        max_iters=args.num_steps * args.iter_size * args.batch_size,
        crop_size=input_size_source,
        scale=args.random_scale,
        mirror=args.random_mirror,
        mean=IMG_MEAN),
                                        batch_size=args.batch_size,
                                        shuffle=True,
                                        num_workers=args.num_workers,
                                        pin_memory=True)

    style_trainloader_iter = enumerate(style_trainloader)

    if STAGE == 1:
        targetloader = data.DataLoader(cityscapesDataSet(
            args.data_dir_target,
            args.data_list_target,
            max_iters=args.num_steps * args.iter_size * args.batch_size,
            crop_size=input_size_target,
            mean=IMG_MEAN,
            set=args.set),
                                       batch_size=args.batch_size,
                                       shuffle=True,
                                       num_workers=args.num_workers,
                                       pin_memory=True)

        targetloader_iter = enumerate(targetloader)

    else:
        #Dataloader for self-training
        targetloader = data.DataLoader(cityscapesDataSetLabel(
            args.data_dir_target,
            args.data_list_target,
            max_iters=args.num_steps * args.iter_size * args.batch_size,
            crop_size=input_size_target,
            mean=IMG_MEAN,
            set=args.set,
            label_folder='Path to generated pseudo labels'),
                                       batch_size=args.batch_size,
                                       shuffle=True,
                                       num_workers=args.num_workers,
                                       pin_memory=True)

        targetloader_iter = enumerate(targetloader)

    interp = nn.Upsample(size=(input_size_source[1], input_size_source[0]),
                         mode='bilinear',
                         align_corners=True)
    interp_target = nn.Upsample(size=(input_size_target[1],
                                      input_size_target[0]),
                                mode='bilinear',
                                align_corners=True)

    # load checkpoint
    model, model_D, optimizer, start_iter = load_checkpoint(
        model,
        model_D,
        optimizer,
        filename=args.snapshot_dir + 'checkpoint_' + CHECKPOINT + '.pth.tar')

    for i_iter in range(start_iter, args.num_steps):
        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)

        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        #train segementation network
        # don't accumulate grads in D
        for param in model_D.parameters():
            param.requires_grad = False

        # train with source
        if STAGE == 1:
            if i_iter % 2 == 0:
                _, batch = next(trainloader_iter)
            else:
                _, batch = next(style_trainloader_iter)

        else:
            _, batch = next(trainloader_iter)

        image_source, label, _, _ = batch
        image_source = Variable(image_source).cuda(args.gpu)

        pred_source = model(image_source)
        pred_source = interp(pred_source)

        loss_seg_source = loss_calc(pred_source, label, args.gpu)
        loss_seg_source_value = loss_seg_source.item()
        loss_seg_source.backward()

        if STAGE == 2:
            # train with target
            _, batch = next(targetloader_iter)
            image_target, target_label, _, _ = batch
            image_target = Variable(image_target).cuda(args.gpu)

            pred_target = model(image_target)
            pred_target = interp_target(pred_target)

            #target segmentation loss
            loss_seg_target = loss_calc(pred_target,
                                        target_label,
                                        gpu=args.gpu)
            loss_seg_target.backward()

        # optimize
        optimizer.step()

        if STAGE == 1:
            # train with target
            _, batch = next(targetloader_iter)
            image_target, _, _ = batch
            image_target = Variable(image_target).cuda(args.gpu)

            pred_target = model(image_target)
            pred_target = interp_target(pred_target)

            #output-level adversarial training
            D_output_target = model_D(F.softmax(pred_target))
            loss_adv = bce_loss(
                D_output_target,
                Variable(
                    torch.FloatTensor(D_output_target.data.size()).fill_(
                        source_adv_label)).cuda(args.gpu))
            loss_adv = loss_adv * args.lambda_adv
            loss_adv.backward()

            #train discriminator
            for param in model_D.parameters():
                param.requires_grad = True

            pred_source = pred_source.detach()
            pred_target = pred_target.detach()

            D_output_source = model_D(F.softmax(pred_source))
            D_output_target = model_D(F.softmax(pred_target))

            loss_D_source = bce_loss(
                D_output_source,
                Variable(
                    torch.FloatTensor(D_output_source.data.size()).fill_(
                        source_adv_label)).cuda(args.gpu))
            loss_D_target = bce_loss(
                D_output_target,
                Variable(
                    torch.FloatTensor(D_output_target.data.size()).fill_(
                        target_adv_label)).cuda(args.gpu))

            loss_D_source = loss_D_source / 2
            loss_D_target = loss_D_target / 2

            loss_D_source.backward()
            loss_D_target.backward()

            #optimize
            optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print('iter = {0:8d}/{1:8d}, loss_seg_source = {2:.5f}'.format(
            i_iter, args.num_steps, loss_seg_source_value))

        if i_iter % args.save_pred_every == 0:
            print('taking snapshot ...')
            state = {
                'iter': i_iter,
                'model': model.state_dict(),
                'model_D': model_D.state_dict(),
                'optimizer': optimizer.state_dict()
            }
            torch.save(
                state,
                osp.join(args.snapshot_dir,
                         'checkpoint_' + str(i_iter) + '.pth.tar'))
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'GTA5_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'GTA5_D_' + str(i_iter) + '.pth'))

            cityscapes_eval_dir = osp.join(args.cityscapes_eval_dir,
                                           str(i_iter))
            if not os.path.exists(cityscapes_eval_dir):
                os.makedirs(cityscapes_eval_dir)

            eval(osp.join(args.snapshot_dir, 'GTA5_' + str(i_iter) + '.pth'),
                 cityscapes_eval_dir, i_iter)

            iou19, iou13, iou = compute_mIoU(cityscapes_eval_dir, i_iter)
            outputfile = open(args.output_file, 'a')
            outputfile.write(
                str(i_iter) + '\t' + str(iou19) + '\t' +
                str(iou.replace('\n', ' ')) + '\n')
            outputfile.close()
Example #7
0
def train(log_file, arch, dataset, batch_size, iter_size, num_workers,
          partial_data, partial_data_size, partial_id, ignore_label, crop_size,
          eval_crop_size, is_training, learning_rate, learning_rate_d,
          supervised, lambda_adv_pred, lambda_semi, lambda_semi_adv, mask_t,
          semi_start, semi_start_adv, d_remain, momentum, not_restore_last,
          num_steps, power, random_mirror, random_scale, random_seed,
          restore_from, restore_from_d, eval_every, save_snapshot_every,
          snapshot_dir, weight_decay, device):
    settings = locals().copy()

    import cv2
    import torch
    import torch.nn as nn
    from torch.utils import data, model_zoo
    import numpy as np
    import pickle
    import torch.optim as optim
    import torch.nn.functional as F
    import scipy.misc
    import sys
    import os
    import os.path as osp
    import pickle

    from model.deeplab import Res_Deeplab
    from model.unet import unet_resnet50
    from model.deeplabv3 import resnet101_deeplabv3
    from model.discriminator import FCDiscriminator
    from utils.loss import CrossEntropy2d, BCEWithLogitsLoss2d
    from utils.evaluation import EvaluatorIoU
    from dataset.voc_dataset import VOCDataSet
    import logger

    torch_device = torch.device(device)

    import time

    if log_file != '' and log_file != 'none':
        if os.path.exists(log_file):
            print('Log file {} already exists; exiting...'.format(log_file))
            return

    with logger.LogFile(log_file if log_file != 'none' else None):
        if dataset == 'pascal_aug':
            ds = VOCDataSet(augmented_pascal=True)
        elif dataset == 'pascal':
            ds = VOCDataSet(augmented_pascal=False)
        else:
            print('Dataset {} not yet supported'.format(dataset))
            return

        print('Command: {}'.format(sys.argv[0]))
        print('Arguments: {}'.format(' '.join(sys.argv[1:])))
        print('Settings: {}'.format(', '.join([
            '{}={}'.format(k, settings[k])
            for k in sorted(list(settings.keys()))
        ])))

        print('Loaded data')

        def loss_calc(pred, label):
            """
            This function returns cross entropy loss for semantic segmentation
            """
            # out shape batch_size x channels x h x w -> batch_size x channels x h x w
            # label shape h x w x 1 x batch_size  -> batch_size x 1 x h x w
            label = label.long().to(torch_device)
            criterion = CrossEntropy2d()

            return criterion(pred, label)

        def lr_poly(base_lr, iter, max_iter, power):
            return base_lr * ((1 - float(iter) / max_iter)**(power))

        def adjust_learning_rate(optimizer, i_iter):
            lr = lr_poly(learning_rate, i_iter, num_steps, power)
            optimizer.param_groups[0]['lr'] = lr
            if len(optimizer.param_groups) > 1:
                optimizer.param_groups[1]['lr'] = lr * 10

        def adjust_learning_rate_D(optimizer, i_iter):
            lr = lr_poly(learning_rate_d, i_iter, num_steps, power)
            optimizer.param_groups[0]['lr'] = lr
            if len(optimizer.param_groups) > 1:
                optimizer.param_groups[1]['lr'] = lr * 10

        def one_hot(label):
            label = label.numpy()
            one_hot = np.zeros((label.shape[0], ds.num_classes, label.shape[1],
                                label.shape[2]),
                               dtype=label.dtype)
            for i in range(ds.num_classes):
                one_hot[:, i, ...] = (label == i)
            #handle ignore labels
            return torch.tensor(one_hot,
                                dtype=torch.float,
                                device=torch_device)

        def make_D_label(label, ignore_mask):
            ignore_mask = np.expand_dims(ignore_mask, axis=1)
            D_label = np.ones(ignore_mask.shape) * label
            D_label[ignore_mask] = ignore_label
            D_label = torch.tensor(D_label,
                                   dtype=torch.float,
                                   device=torch_device)

            return D_label

        h, w = map(int, eval_crop_size.split(','))
        eval_crop_size = (h, w)

        h, w = map(int, crop_size.split(','))
        crop_size = (h, w)

        # create network
        if arch == 'deeplab2':
            model = Res_Deeplab(num_classes=ds.num_classes)
        elif arch == 'unet_resnet50':
            model = unet_resnet50(num_classes=ds.num_classes)
        elif arch == 'resnet101_deeplabv3':
            model = resnet101_deeplabv3(num_classes=ds.num_classes)
        else:
            print('Architecture {} not supported'.format(arch))
            return

        # load pretrained parameters
        if restore_from[:4] == 'http':
            saved_state_dict = model_zoo.load_url(restore_from)
        else:
            saved_state_dict = torch.load(restore_from)

        # only copy the params that exist in current model (caffe-like)
        new_params = model.state_dict().copy()
        for name, param in new_params.items():
            if name in saved_state_dict and param.size(
            ) == saved_state_dict[name].size():
                new_params[name].copy_(saved_state_dict[name])
        model.load_state_dict(new_params)

        model.train()
        model = model.to(torch_device)

        # init D
        model_D = FCDiscriminator(num_classes=ds.num_classes)
        if restore_from_d is not None:
            model_D.load_state_dict(torch.load(restore_from_d))
        model_D.train()
        model_D = model_D.to(torch_device)

        print('Built model')

        if snapshot_dir is not None:
            if not os.path.exists(snapshot_dir):
                os.makedirs(snapshot_dir)

        ds_train_xy = ds.train_xy(crop_size=crop_size,
                                  scale=random_scale,
                                  mirror=random_mirror,
                                  range01=model.RANGE01,
                                  mean=model.MEAN,
                                  std=model.STD)
        ds_train_y = ds.train_y(crop_size=crop_size,
                                scale=random_scale,
                                mirror=random_mirror,
                                range01=model.RANGE01,
                                mean=model.MEAN,
                                std=model.STD)
        ds_val_xy = ds.val_xy(crop_size=eval_crop_size,
                              scale=False,
                              mirror=False,
                              range01=model.RANGE01,
                              mean=model.MEAN,
                              std=model.STD)

        train_dataset_size = len(ds_train_xy)

        if partial_data_size != -1:
            if partial_data_size > partial_data_size:
                print('partial-data-size > |train|: exiting')
                return

        if partial_data == 1.0 and (partial_data_size == -1 or
                                    partial_data_size == train_dataset_size):
            trainloader = data.DataLoader(ds_train_xy,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=5,
                                          pin_memory=True)

            trainloader_gt = data.DataLoader(ds_train_y,
                                             batch_size=batch_size,
                                             shuffle=True,
                                             num_workers=5,
                                             pin_memory=True)

            trainloader_remain = None
            print('|train|={}'.format(train_dataset_size))
            print('|val|={}'.format(len(ds_val_xy)))
        else:
            #sample partial data
            if partial_data_size != -1:
                partial_size = partial_data_size
            else:
                partial_size = int(partial_data * train_dataset_size)

            if partial_id is not None:
                train_ids = pickle.load(open(partial_id))
                print('loading train ids from {}'.format(partial_id))
            else:
                rng = np.random.RandomState(random_seed)
                train_ids = list(rng.permutation(train_dataset_size))

            if snapshot_dir is not None:
                pickle.dump(train_ids,
                            open(osp.join(snapshot_dir, 'train_id.pkl'), 'wb'))

            print('|train supervised|={}'.format(partial_size))
            print('|train unsupervised|={}'.format(train_dataset_size -
                                                   partial_size))
            print('|val|={}'.format(len(ds_val_xy)))

            print('supervised={}'.format(list(train_ids[:partial_size])))

            train_sampler = data.sampler.SubsetRandomSampler(
                train_ids[:partial_size])
            train_remain_sampler = data.sampler.SubsetRandomSampler(
                train_ids[partial_size:])
            train_gt_sampler = data.sampler.SubsetRandomSampler(
                train_ids[:partial_size])

            trainloader = data.DataLoader(ds_train_xy,
                                          batch_size=batch_size,
                                          sampler=train_sampler,
                                          num_workers=3,
                                          pin_memory=True)
            trainloader_remain = data.DataLoader(ds_train_xy,
                                                 batch_size=batch_size,
                                                 sampler=train_remain_sampler,
                                                 num_workers=3,
                                                 pin_memory=True)
            trainloader_gt = data.DataLoader(ds_train_y,
                                             batch_size=batch_size,
                                             sampler=train_gt_sampler,
                                             num_workers=3,
                                             pin_memory=True)

            trainloader_remain_iter = enumerate(trainloader_remain)

        testloader = data.DataLoader(ds_val_xy,
                                     batch_size=1,
                                     shuffle=False,
                                     pin_memory=True)

        print('Data loaders ready')

        trainloader_iter = enumerate(trainloader)
        trainloader_gt_iter = enumerate(trainloader_gt)

        # implement model.optim_parameters(args) to handle different models' lr setting

        # optimizer for segmentation network
        optimizer = optim.SGD(model.optim_parameters(learning_rate),
                              lr=learning_rate,
                              momentum=momentum,
                              weight_decay=weight_decay)
        optimizer.zero_grad()

        # optimizer for discriminator network
        optimizer_D = optim.Adam(model_D.parameters(),
                                 lr=learning_rate_d,
                                 betas=(0.9, 0.99))
        optimizer_D.zero_grad()

        # loss/ bilinear upsampling
        bce_loss = BCEWithLogitsLoss2d()

        print('Built optimizer')

        # labels for adversarial training
        pred_label = 0
        gt_label = 1

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_mask_accum = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0

        t1 = time.time()

        print('Training for {} steps...'.format(num_steps))
        for i_iter in range(num_steps + 1):

            model.train()
            model.freeze_batchnorm()

            optimizer.zero_grad()
            adjust_learning_rate(optimizer, i_iter)
            optimizer_D.zero_grad()
            adjust_learning_rate_D(optimizer_D, i_iter)

            for sub_i in range(iter_size):

                # train G

                if not supervised:
                    # don't accumulate grads in D
                    for param in model_D.parameters():
                        param.requires_grad = False

                # do semi first
                if not supervised and (lambda_semi > 0 or lambda_semi_adv > 0 ) and i_iter >= semi_start_adv and \
                        trainloader_remain is not None:
                    try:
                        _, batch = next(trainloader_remain_iter)
                    except:
                        trainloader_remain_iter = enumerate(trainloader_remain)
                        _, batch = next(trainloader_remain_iter)

                    # only access to img
                    images, _, _, _ = batch
                    images = images.float().to(torch_device)

                    pred = model(images)
                    pred_remain = pred.detach()

                    D_out = model_D(F.softmax(pred, dim=1))
                    D_out_sigmoid = F.sigmoid(
                        D_out).data.cpu().numpy().squeeze(axis=1)

                    ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(
                        np.bool)

                    loss_semi_adv = lambda_semi_adv * bce_loss(
                        D_out, make_D_label(gt_label, ignore_mask_remain))
                    loss_semi_adv = loss_semi_adv / iter_size

                    #loss_semi_adv.backward()
                    loss_semi_adv_value += float(
                        loss_semi_adv) / lambda_semi_adv

                    if lambda_semi <= 0 or i_iter < semi_start:
                        loss_semi_adv.backward()
                        loss_semi_value = 0
                    else:
                        # produce ignore mask
                        semi_ignore_mask = (D_out_sigmoid < mask_t)

                        semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                        semi_gt[semi_ignore_mask] = ignore_label

                        semi_ratio = 1.0 - float(
                            semi_ignore_mask.sum()) / semi_ignore_mask.size

                        loss_semi_mask_accum += float(semi_ratio)

                        if semi_ratio == 0.0:
                            loss_semi_value += 0
                        else:
                            semi_gt = torch.FloatTensor(semi_gt)

                            loss_semi = lambda_semi * loss_calc(pred, semi_gt)
                            loss_semi = loss_semi / iter_size
                            loss_semi_value += float(loss_semi) / lambda_semi
                            loss_semi += loss_semi_adv
                            loss_semi.backward()

                else:
                    loss_semi = None
                    loss_semi_adv = None

                # train with source

                try:
                    _, batch = next(trainloader_iter)
                except:
                    trainloader_iter = enumerate(trainloader)
                    _, batch = next(trainloader_iter)

                images, labels, _, _ = batch
                images = images.float().to(torch_device)
                ignore_mask = (labels.numpy() == ignore_label)
                pred = model(images)

                loss_seg = loss_calc(pred, labels)

                if supervised:
                    loss = loss_seg
                else:
                    D_out = model_D(F.softmax(pred, dim=1))

                    loss_adv_pred = bce_loss(
                        D_out, make_D_label(gt_label, ignore_mask))

                    loss = loss_seg + lambda_adv_pred * loss_adv_pred
                    loss_adv_pred_value += float(loss_adv_pred) / iter_size

                # proper normalization
                loss = loss / iter_size
                loss.backward()
                loss_seg_value += float(loss_seg) / iter_size

                if not supervised:
                    # train D

                    # bring back requires_grad
                    for param in model_D.parameters():
                        param.requires_grad = True

                    # train with pred
                    pred = pred.detach()

                    if d_remain:
                        pred = torch.cat((pred, pred_remain), 0)
                        ignore_mask = np.concatenate(
                            (ignore_mask, ignore_mask_remain), axis=0)

                    D_out = model_D(F.softmax(pred, dim=1))
                    loss_D = bce_loss(D_out,
                                      make_D_label(pred_label, ignore_mask))
                    loss_D = loss_D / iter_size / 2
                    loss_D.backward()
                    loss_D_value += float(loss_D)

                    # train with gt
                    # get gt labels
                    try:
                        _, batch = next(trainloader_gt_iter)
                    except:
                        trainloader_gt_iter = enumerate(trainloader_gt)
                        _, batch = next(trainloader_gt_iter)

                    _, labels_gt, _, _ = batch
                    D_gt_v = one_hot(labels_gt)
                    ignore_mask_gt = (labels_gt.numpy() == ignore_label)

                    D_out = model_D(D_gt_v)
                    loss_D = bce_loss(D_out,
                                      make_D_label(gt_label, ignore_mask_gt))
                    loss_D = loss_D / iter_size / 2
                    loss_D.backward()
                    loss_D_value += float(loss_D)

            optimizer.step()
            optimizer_D.step()

            sys.stdout.write('.')
            sys.stdout.flush()

            if i_iter % eval_every == 0 and i_iter != 0:
                model.eval()
                with torch.no_grad():
                    evaluator = EvaluatorIoU(ds.num_classes)
                    for index, batch in enumerate(testloader):
                        image, label, size, name = batch
                        size = size[0].numpy()
                        image = image.float().to(torch_device)
                        output = model(image)
                        output = output.cpu().data[0].numpy()

                        output = output[:, :size[0], :size[1]]
                        gt = np.asarray(label[0].numpy()[:size[0], :size[1]],
                                        dtype=np.int)

                        output = output.transpose(1, 2, 0)
                        output = np.asarray(np.argmax(output, axis=2),
                                            dtype=np.int)

                        evaluator.sample(gt, output, ignore_value=ignore_label)

                        sys.stdout.write('+')
                        sys.stdout.flush()

                per_class_iou = evaluator.score()
                mean_iou = per_class_iou.mean()

                loss_seg_value /= eval_every
                loss_adv_pred_value /= eval_every
                loss_D_value /= eval_every
                loss_semi_mask_accum /= eval_every
                loss_semi_value /= eval_every
                loss_semi_adv_value /= eval_every

                sys.stdout.write('\n')

                t2 = time.time()

                print(
                    'iter = {:8d}/{:8d}, took {:.3f}s, loss_seg = {:.6f}, loss_adv_p = {:.6f}, loss_D = {:.6f}, loss_semi_mask_rate = {:.3%} loss_semi = {:.6f}, loss_semi_adv = {:.3f}'
                    .format(i_iter, num_steps, t2 - t1, loss_seg_value,
                            loss_adv_pred_value, loss_D_value,
                            loss_semi_mask_accum, loss_semi_value,
                            loss_semi_adv_value))

                for i, (class_name,
                        iou) in enumerate(zip(ds.class_names, per_class_iou)):
                    print('class {:2d} {:12} IU {:.2f}'.format(
                        i, class_name, iou))

                print('meanIOU: ' + str(mean_iou) + '\n')

                loss_seg_value = 0
                loss_adv_pred_value = 0
                loss_D_value = 0
                loss_semi_value = 0
                loss_semi_mask_accum = 0
                loss_semi_adv_value = 0

                t1 = t2

            if snapshot_dir is not None and i_iter % save_snapshot_every == 0 and i_iter != 0:
                print('taking snapshot ...')
                torch.save(
                    model.state_dict(),
                    osp.join(snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
                torch.save(
                    model_D.state_dict(),
                    osp.join(snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

        if snapshot_dir is not None:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(snapshot_dir, 'VOC_' + str(num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(snapshot_dir, 'VOC_' + str(num_steps) + '_D.pth'))
Example #8
0
def main():
    # LD build for summary
    # training_summary = tf.summary.FileWriter(os.path.join(SUMMARY_DIR, 'train'))
    # val_summary = tf.summary.FileWriter(os.path.join(SUMMARY_DIR, 'val'))
    # dice_placeholder = tf.placeholder(tf.float32, [], name='dice')
    # loss_placeholder = tf.placeholder(tf.float32, [], name='loss')
    # # image_placeholder = tf.placeholder(tf.float32, [400*2, 400*2], name='image')
    # # prediction_placeholder = tf.placeholder(tf.float32, [400*2, 400*2], name='prediction')
    # tf.summary.scalar('dice', dice_placeholder)
    # tf.summary.scalar('loss', loss_placeholder)
    # # tf.summary.image('image', image_placeholder, max_outputs=1)
    # # tf.summary.image('prediction', prediction_placeholder, max_outputs=1)
    # summary_op = tf.summary.merge_all()
    # config = tf.ConfigProto()
    # config.gpu_options.allow_growth = True
    # sess = tf.Session(config=config)

    perfix_name = 'Liver'
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    # LD delete
    '''
    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(args.gpu)
    '''

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    # LD ADD start
    from dataset.LiverDataset.liver_dataset import LiverDataset
    user_name = 'ld'
    validation_interval = 800
    max_steps = 1000000000
    batch_size = 5
    n_neighboringslices = 1
    input_size = 400
    output_size = 400
    slice_type = 'axial'
    oversample = False
    # reset_counter = args.reset_counter
    label_of_interest = 1
    label_required = 0
    magic_number = 26.91
    max_slice_tries_val = 0
    max_slice_tries_train = 2
    fuse_labels = True
    apply_crop = False

    train_data_dir = "/home/" + user_name + "/Documents/dataset/ISBI2017/media/nas/01_Datasets/CT/LITS/Training_Batch_2"
    test_data_dir = "/home/" + user_name + "/Documents/dataset/ISBI2017/media/nas/01_Datasets/CT/LITS/Training_Batch_1"
    train_dataset = LiverDataset(data_dir=train_data_dir,
                                 slice_type=slice_type,
                                 n_neighboringslices=n_neighboringslices,
                                 input_size=input_size,
                                 oversample=oversample,
                                 label_of_interest=label_of_interest,
                                 label_required=label_required,
                                 max_slice_tries=max_slice_tries_train,
                                 fuse_labels=fuse_labels,
                                 apply_crop=apply_crop,
                                 interval=validation_interval,
                                 is_training=True,
                                 batch_size=batch_size,
                                 data_augmentation=True)
    val_dataset = LiverDataset(data_dir=test_data_dir,
                               slice_type=slice_type,
                               n_neighboringslices=n_neighboringslices,
                               input_size=input_size,
                               oversample=oversample,
                               label_of_interest=label_of_interest,
                               label_required=label_required,
                               max_slice_tries=max_slice_tries_val,
                               fuse_labels=fuse_labels,
                               apply_crop=apply_crop,
                               interval=validation_interval,
                               is_training=False,
                               batch_size=batch_size)
    # LD ADD end

    # LD delete
    '''
    train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size,
                    scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size,
                       scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                        batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = range(train_dataset_size)
            np.random.shuffle(train_ids)

        pickle.dump(train_ids, open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        train_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, sampler=train_sampler, num_workers=3, pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                        batch_size=args.batch_size, sampler=train_remain_sampler, num_workers=3, pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                        batch_size=args.batch_size, sampler=train_gt_sampler, num_workers=3, pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)


    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)
    '''

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # LD delete
    '''
    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9,0.99))
    optimizer_D.zero_grad()
    '''

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size, input_size), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size, input_size),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size, input_size), mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1
    loss_list = []

    for i_iter in range(iter_start, args.num_steps):

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0
        num_prediction = 0
        num_ground_truth = 0
        num_intersection = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        # LD delete
        '''
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)
        '''
        for sub_i in range(args.iter_size):

            # train G
            # LD delete
            '''
            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            
            # do semi first
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0 ) and i_iter >= args.semi_start_adv :
                try:
                    _, batch = trainloader_remain_iter.next()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.next()
                
                # only access to img
                images, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)
                
                
                pred = interp(model(images))
                pred_remain = pred.detach()

                D_out = interp(model_D(F.softmax(pred)))
                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(axis=1)

                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(np.bool)

                loss_semi_adv = args.lambda_semi_adv * bce_loss(D_out, make_D_label(gt_label, ignore_mask_remain))
                loss_semi_adv = loss_semi_adv/args.iter_size

                #loss_semi_adv.backward()
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy()[0]/args.lambda_semi_adv

                if args.lambda_semi <= 0 or i_iter < args.semi_start:
                    loss_semi_adv.backward()
                    loss_semi_value = 0
                else:
                    # produce ignore mask
                    semi_ignore_mask = (D_out_sigmoid < args.mask_T)

                    semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                    semi_gt[semi_ignore_mask] = 255

                    semi_ratio = 1.0 - float(semi_ignore_mask.sum())/semi_ignore_mask.size
                    print('semi ratio: {:.4f}'.format(semi_ratio))

                    if semi_ratio == 0.0:
                        loss_semi_value += 0
                    else:
                        semi_gt = torch.FloatTensor(semi_gt)

                        loss_semi = args.lambda_semi * loss_calc(pred, semi_gt, args.gpu)
                        loss_semi = loss_semi/args.iter_size
                        loss_semi_value += loss_semi.data.cpu().numpy()[0]/args.lambda_semi
                        loss_semi += loss_semi_adv
                        loss_semi.backward()

            else:
                loss_semi = None
                loss_semi_adv = None
            '''

            # train with source

            # LD delete
            '''
            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.next()

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            '''
            batch_image, batch_label = train_dataset.get_next_batch()
            batch_image = np.transpose(batch_image, axes=(0, 3, 1, 2))
            batch_image = np.concatenate(
                [batch_image, batch_image, batch_image], axis=1)
            # print('Shape: ', np.shape(batch_image))
            batch_image_torch = torch.Tensor(batch_image)
            images = Variable(batch_image_torch).cuda(args.gpu)

            # LD delete
            # ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))
            pred_ny = pred.data.cpu().numpy()
            pred_ny = np.transpose(pred_ny, axes=(0, 2, 3, 1))
            pred_label_ny = np.squeeze(np.argmax(pred_ny, axis=3))

            # prepare for dice
            # print('Shape of gt is: ', np.shape(batch_label))
            # print('Shape of pred is: ', np.shape(pred_ny))
            # print('Shape of pred_label is: ', np.shape(pred_label_ny))
            num_prediction += np.sum(np.asarray(pred_label_ny, np.uint8))
            num_ground_truth += np.sum(np.asarray(batch_label >= 1, np.uint8))
            num_intersection += np.sum(
                np.asarray(
                    np.logical_and(batch_label >= 1, pred_label_ny >= 1),
                    np.uint8))
            # num_intersection += np.sum(np.asarray(batch_label >= 1, np.uint8) == np.asarray(pred_label_ny, np.uint8))

            loss_seg = loss_calc(pred, batch_label, args.gpu)

            # LD delete
            '''
            D_out = interp(model_D(F.softmax(pred)))

            loss_adv_pred = bce_loss(D_out, make_D_label(gt_label, ignore_mask))

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred
            '''
            loss = loss_seg
            # print('Loss is: ', loss)
            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            # print('Loss of numpy is: ', loss_seg.data.cpu().numpy())
            # print('Loss of numpy of zero is: ', loss_seg.data.cpu().numpy())
            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            loss_list.append(loss_seg_value)
            # loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()[0]/args.iter_size

            # train D
            # LD delete
            '''
            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            if args.D_remain:
                pred = torch.cat((pred, pred_remain), 0)
                ignore_mask = np.concatenate((ignore_mask,ignore_mask_remain), axis = 0)

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D/args.iter_size/2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]


            # train with gt
            # get gt labels
            try:
                _, batch = trainloader_gt_iter.next()
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = trainloader_gt_iter.next()

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D/args.iter_size/2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]
            '''

        optimizer.step()
        # optimizer_D.step()
        dice = (2 * num_intersection + 1e-7) / (num_prediction +
                                                num_ground_truth + 1e-7)
        print('exp = {}'.format(args.snapshot_dir))
        print('iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}'.format(
            i_iter, args.num_steps, loss_seg_value))
        print(
            'dice: %.4f, num_prediction: %d, num_ground_truth: %d, num_intersection: %d'
            % (dice, num_prediction, num_ground_truth, num_intersection))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         perfix_name + str(args.num_steps) + '.pth'))
            # torch.save(model_D.state_dict(), osp.join(args.snapshot_dir, perfix_name +str(args.num_steps)+'_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            # torch.save(model.state_dict(), osp.join(args.snapshot_dir, perfix_name + str(i_iter)+'.pth'))
            save_model(model, args.snapshot_dir, perfix_name, i_iter, 2)
            # torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, perfix_name +str(i_iter)+'_D.pth'))

        # if i_iter % UPDATE_TENSORBOARD_INTERVAL and i_iter != 0:
        #     # update tensorboard
        #     feed_dict = {
        #         dice_placeholder: dice,
        #         loss_placeholder: np.mean(loss_list)
        #     }
        #     summery_value = sess.run(summary_op, feed_dict)
        #     training_summary.add_summary(summery_value, i_iter)
        #     training_summary.flush()
        #
        #     # for validation
        #     val_num_prediction = 0
        #     val_num_ground_truth = 0
        #     val_num_intersection = 0
        #     loss_list = []
        #
        #     for _ in range(VAL_EXECUTE_TIMES):
        #         batch_image, batch_label = val_dataset.get_next_batch()
        #         batch_image = np.transpose(batch_image, axes=(0, 3, 1, 2))
        #         batch_image = np.concatenate([batch_image, batch_image, batch_image], axis=1)
        #         # print('Shape: ', np.shape(batch_image))
        #         batch_image_torch = torch.Tensor(batch_image)
        #         images = Variable(batch_image_torch).cuda(args.gpu)
        #
        #         # LD delete
        #         # ignore_mask = (labels.numpy() == 255)
        #         pred = interp(model(images))
        #         pred_ny = pred.data.cpu().numpy()
        #         pred_ny = np.transpose(pred_ny, axes=(0, 2, 3, 1))
        #         pred_label_ny = np.squeeze(np.argmax(pred_ny, axis=3))
        #         val_num_prediction += np.sum(np.asarray(pred_label_ny, np.uint8))
        #         val_num_ground_truth += np.sum(np.asarray(batch_label >= 1, np.uint8))
        #         val_num_intersection += np.sum(np.asarray(np.logical_and(batch_label >= 1, pred_label_ny >= 1), np.uint8))
        #
        #         loss_seg = loss_calc(pred, batch_label, args.gpu)
        #         loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
        #         loss_list.append(loss_seg)
        #     dice = (2 * val_num_intersection + 1e-7) / (val_num_prediction + val_num_ground_truth + 1e-7)
        #     feed_dict = {
        #         dice_placeholder: dice,
        #         loss_placeholder: np.mean(loss_list)
        #     }
        #     summery_value = sess.run(summary_op, feed_dict)
        #     val_summary.add_summary(summery_value, i_iter)
        #     val_summary.flush()
        #     loss_list = []

    training_summary.close()
    val_summary.close()
    end = timeit.default_timer()
    print(end - start, 'seconds')
def main():
    h, w = list(map(int, args.input_size.split(',')))  # 321, 321
    input_size = (h, w)

    cudnn.enabled = True

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)  # num_classes = 21

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in list(new_params.items()):
        # print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            # print(('copy {}'.format(name)))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    # init D
    model_D = FCDiscriminator(
        num_classes=args.num_classes)  # num_classes = 21,全卷积判别模型
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))

    model_D.train()
    model_D.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:  # 使用全部数据
        trainloader = data.DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            shuffle=True,  # batch_size = 10
            num_workers=5,
            pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        # sample partial data 部分数据
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print(('loading train ids from {}'.format(args.partial_id)))
        else:
            train_ids = list(range(train_dataset_size))
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'),
                         'wb'))  # 将train_ids写入train_id.pkl

        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(
            train_dataset,  # 数据集中采样输入
            batch_size=args.batch_size,
            sampler=train_sampler,
            num_workers=3,
            pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    # interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):  # num_steps = 20000
        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):  # iter_size = 1
            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0
                ) and i_iter >= args.semi_start_adv:
                try:
                    _, batch = next(trainloader_remain_iter)
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = next(trainloader_remain_iter)

                # only access to img 无标签数据
                images, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)

                pred = interp(model(images))
                pred_remain = pred.detach()  # 返回一个新的Variable,不具有grade

                D_out = interp(model_D(F.softmax(pred)))
                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(
                    axis=1)

                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(
                    np.bool)

                loss_semi_adv = args.lambda_semi_adv * bce_loss(
                    D_out, make_D_label(gt_label, ignore_mask_remain))
                loss_semi_adv = loss_semi_adv / args.iter_size

                # loss_semi_adv.backward()

                # print('bug,', loss_semi_adv.data.cpu().numpy())

                # loss_semi_adv_value += loss_semi_adv.data.cpu().numpy()[0]/args.lambda_semi_adv
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy(
                ) / args.lambda_semi_adv

                if args.lambda_semi <= 0 or i_iter < args.semi_start:
                    loss_semi_adv.backward()
                    loss_semi_value = 0
                else:
                    # produce ignore mask
                    semi_ignore_mask = (D_out_sigmoid < args.mask_T
                                        )  # mask_T = 0.2,阈值

                    semi_gt = pred.data.cpu().numpy().argmax(
                        axis=1)  # 返回维度为1上的最大值的下标
                    semi_gt[semi_ignore_mask] = 255

                    semi_ratio = 1.0 - float(semi_ignore_mask.sum(
                    )) / semi_ignore_mask.size  # 被忽略的点占的比重
                    print(('semi ratio: {:.4f}'.format(semi_ratio)))

                    if semi_ratio == 0.0:
                        loss_semi_value += 0
                    else:
                        semi_gt = torch.FloatTensor(semi_gt)

                        loss_semi = args.lambda_semi * loss_calc(
                            pred, semi_gt, args.gpu)
                        loss_semi = loss_semi / args.iter_size
                        # loss_semi_value += loss_semi.data.cpu().numpy()[0]/args.lambda_semi
                        loss_semi_value += loss_semi.data.cpu().numpy(
                        ) / args.lambda_semi
                        loss_semi += loss_semi_adv
                        loss_semi.backward()

            else:
                loss_semi = None
                loss_semi_adv = None

            # train with source

            try:
                _, batch = next(trainloader_iter)
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = next(trainloader_iter)

            images, labels, _, _ = batch  # 有标签数据
            images = Variable(images).cuda(args.gpu)
            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))  # interp上采样

            loss_seg = loss_calc(pred, labels,
                                 args.gpu)  # 语义分割的cross entropy loss

            D_out = interp(model_D(F.softmax(pred)))  # 得到判别模型输出的判别图

            loss_adv_pred = bce_loss(D_out,
                                     make_D_label(gt_label, ignore_mask))

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()

            # loss_seg_value += loss_seg.data.cpu().numpy()[0]/args.iter_size
            # loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()[0]/args.iter_size

            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
            ) / args.iter_size

            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            if args.D_remain:
                pred = torch.cat((pred, pred_remain), 0)
                ignore_mask = np.concatenate((ignore_mask, ignore_mask_remain),
                                             axis=0)

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            # loss_D_value += loss_D.data.cpu().numpy()[0]
            loss_D_value += loss_D.data.cpu().numpy()

            # train with gt
            # get gt labels
            try:
                _, batch = next(trainloader_gt_iter)
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = next(trainloader_gt_iter)

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(
                args.gpu)  # 每个类别一张label图,batch * class * h * w
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))  # ground_truth输入判别模型
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            # loss_D_value += loss_D.data.cpu().numpy()[0]
            loss_D_value += loss_D.data.cpu().numpy()

        optimizer.step()
        optimizer_D.step()

        print(('exp = {}'.format(args.snapshot_dir)))
        print((
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, '
            'loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}'.format(
                i_iter, args.num_steps, loss_seg_value, loss_adv_pred_value,
                loss_D_value, loss_semi_value, loss_semi_adv_value)))

        if i_iter >= args.num_steps - 1:  # num_step = 20000
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:  # save_pred_every = 5000
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Example #10
0
def main():

    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu

    # Define network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = list(range(train_dataset_size))
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=3,
                                      pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    bce_loss_1 = BCEWithLogitsLoss2dd()
    criterion = nn.L1Loss()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0
        loss_laplacian = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if (args.lambda_semi > 0 or args.lambda_semi_adv > 0
                ) and i_iter >= args.semi_start_adv:
                try:
                    _, batch = trainloader_remain_iter.__next__()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.__next__()

                # only access to img
                images, _, _, _ = batch
                images = images.cuda(args.gpu)

                pred = interp(model(images))
                pred_remain = pred.detach()

                D_out = interp(model_D(F.softmax(pred)))
                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(
                    axis=1)

                ignore_mask_remain = np.zeros(D_out_sigmoid.shape).astype(
                    np.bool)

                l, _, _ = bce_loss_1(
                    D_out, make_D_label(gt_label, ignore_mask_remain))
                loss_semi_adv = args.lambda_semi_adv * -l
                loss_semi_adv = loss_semi_adv / args.iter_size

                #loss_semi_adv.backward()
                loss_semi_adv_value += loss_semi_adv.data.cpu().numpy(
                ) / args.lambda_semi_adv

                if args.lambda_semi <= 0 or i_iter < args.semi_start:
                    loss_semi_adv.backward()
                    loss_semi_value = 0
                else:
                    # produce ignore mask
                    semi_ignore_mask = (D_out_sigmoid < args.mask_T)

                    semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                    semi_gt[semi_ignore_mask] = 255

                    semi_ratio = 1.0 - float(
                        semi_ignore_mask.sum()) / semi_ignore_mask.size
                    print('semi ratio: {:.4f}'.format(semi_ratio))

                    if semi_ratio == 0.0:
                        loss_semi_value += 0
                    else:
                        semi_gt = torch.FloatTensor(semi_gt)

                        loss_semi = args.lambda_semi * loss_calc(
                            pred, semi_gt, args.gpu)
                        loss_semi = loss_semi / args.iter_size
                        loss_semi_value += loss_semi.data.cpu().numpy(
                        ) / args.lambda_semi
                        loss_semi += loss_semi_adv
                        loss_semi.backward()

            else:
                loss_semi = None
                loss_semi_adv = None

            # train with source

            try:
                _, batch = trainloader_iter.__next__()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.__next__()

            images, labels, _, _ = batch
            images = images.cuda(args.gpu)
            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            for i in range(10):
                imagess = torch.zeros(321, 321).cuda()
                for j in range(21):
                    try:
                        imagess += pred[i, j, :, :].reshape(321, 321)
                    except IndexError:
                        pass
                try:
                    label = labels[i, :, :].reshape(321, 321).cuda()
                except IndexError:
                    pass
                imagess = torch.from_numpy(
                    cv2.Laplacian(imagess.cpu().detach().numpy(), -1)).cuda()
                labell = torch.from_numpy(
                    cv2.Laplacian(label.cpu().detach().numpy(), -1)).cuda()
                imagess = imagess.reshape(1, 1, 321, 321)
                labell = labell.reshape(1, 1, 321, 321)
                l, _, _ = bce_loss_1(imagess, labell)
                loss_laplacian += l

            loss_laplacian = -loss_laplacian
            loss_seg = loss_calc(pred, labels, args.gpu)

            D_out = interp(model_D(F.softmax(pred)))

            l, _, _ = bce_loss_1(D_out, make_D_label(gt_label, ignore_mask))
            loss_adv_pred = -l

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred + loss_laplacian

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
            ) / args.iter_size

            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            if args.D_remain:
                pred = torch.cat((pred, pred_remain), 0)
                ignore_mask = np.concatenate((ignore_mask, ignore_mask_remain),
                                             axis=0)

            D_out = interp(model_D(F.softmax(pred)))
            l, p, t = bce_loss_1(D_out, make_D_label(pred_label, ignore_mask))
            gradient_penalty = compute_gradient_penalty(
                torch.ones_like(pred) * pred_label, pred, model_D)
            loss_D = l + 0.05 * gradient_penalty
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()

            # train with gt
            # get gt labels
            try:
                _, batch = trainloader_gt_iter.__next__()
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = trainloader_gt_iter.__next__()

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            l, p, t = bce_loss_1(D_out, make_D_label(gt_label, ignore_mask_gt))
            gradient_penalty = compute_gradient_penalty(
                torch.ones_like(D_gt_v) * gt_label, D_gt_v, model_D)
            loss_D = -l + 0.05 * gradient_penalty
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()

        optimizer.step()
        if sub_i / 5 == 0:
            optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}, loss_laplacian = {7:.3f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_semi_value,
                    loss_semi_adv_value, loss_laplacian))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Example #11
0
def main():
    # 将参数的input_size 映射到整数,并赋值,从字符串转换到整数二元组
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = False
    gpu = args.gpu

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    # 确保模型中参数的格式与要加载的参数相同
    # 返回一个字典,保存着module的所有状态(state);parameters和persistent buffers都会包含在字典中,字典的key就是parameter和buffer的 names。
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        # print (name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            # print('copy {}'.format(name))
    model.load_state_dict(new_params)

    # 设置为训练模式
    model.train()
    cudnn.benchmark = True

    model.cuda(gpu)

    # init D
    model_D = FCDiscriminator(num_classes=args.num_classes)
    if args.restore_from_D is not None:
        model_D.load_state_dict(torch.load(args.restore_from_D))
    model_D.train()
    model_D.cuda(gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)
    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        # sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = list(range(train_dataset_size))  # ?
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'),
                         'wb'))  # 写入文件

        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=3,
                                      pin_memory=True)
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    optimizer_D = optim.Adam(model_D.parameters(),
                             lr=args.learning_rate_D,
                             betas=(0.9, 0.99))
    optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]),
                         mode='bilinear')  # ???

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    for i_iter in range(args.num_steps):
        print("Iter:", i_iter)
        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        optimizer_D.zero_grad()
        adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # don't accumulate grads in D
            for param in model_D.parameters():
                param.requires_grad = False

            # do semi first
            if args.lambda_semi > 0 and i_iter >= args.semi_start:
                try:
                    _, batch = next(trainloader_remain_iter)
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = next(trainloader_remain_iter)

                # only access to img
                images, _, _, _ = batch

                images = Variable(images).cuda(gpu)
                # images = Variable(images).cpu()

                pred = interp(model(images))
                D_out = interp(model_D(F.softmax(pred)))

                D_out_sigmoid = F.sigmoid(D_out).data.cpu().numpy().squeeze(
                    axis=1)

                # produce ignore mask
                semi_ignore_mask = (D_out_sigmoid < args.mask_T)

                semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                semi_gt[semi_ignore_mask] = 255

                semi_ratio = 1.0 - float(
                    semi_ignore_mask.sum()) / semi_ignore_mask.size
                print('semi ratio: {:.4f}'.format(semi_ratio))

                if semi_ratio == 0.0:
                    loss_semi_value += 0
                else:
                    semi_gt = torch.FloatTensor(semi_gt)

                    loss_semi = args.lambda_semi * loss_calc(
                        pred, semi_gt, args.gpu)
                    loss_semi = loss_semi / args.iter_size
                    loss_semi.backward()
                    loss_semi_value += loss_semi.data.cpu().numpy(
                    )[0] / args.lambda_semi
            else:
                loss_semi = None

            # train with source

            try:
                _, batch = next(trainloader_iter)
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = next(trainloader_iter)

            images, labels, _, _ = batch

            images = Variable(images).cuda(gpu)
            # images = Variable(images).cpu()

            ignore_mask = (labels.numpy() == 255)
            pred = interp(model(images))

            loss_seg = loss_calc(pred, labels, args.gpu)

            D_out = interp(model_D(F.softmax(pred)))

            loss_adv_pred = bce_loss(D_out,
                                     make_D_label(gt_label, ignore_mask))

            loss = loss_seg + args.lambda_adv_pred * loss_adv_pred

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy()[0] / args.iter_size
            loss_adv_pred_value += loss_adv_pred.data.cpu().numpy(
            )[0] / args.iter_size

            # train D

            # bring back requires_grad
            for param in model_D.parameters():
                param.requires_grad = True

            # train with pred
            pred = pred.detach()

            D_out = interp(model_D(F.softmax(pred)))
            loss_D = bce_loss(D_out, make_D_label(pred_label, ignore_mask))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]

            # train with gt
            # get gt labels
            try:
                _, batch = next(trainloader_gt_iter)
            except:
                trainloader_gt_iter = enumerate(trainloader_gt)
                _, batch = next(trainloader_gt_iter)

            _, labels_gt, _, _ = batch
            D_gt_v = Variable(one_hot(labels_gt)).cuda(args.gpu)
            # D_gt_v = Variable(one_hot(labels_gt)).cpu()
            ignore_mask_gt = (labels_gt.numpy() == 255)

            D_out = interp(model_D(D_gt_v))
            loss_D = bce_loss(D_out, make_D_label(gt_label, ignore_mask_gt))
            loss_D = loss_D / args.iter_size / 2
            loss_D.backward()
            loss_D_value += loss_D.data.cpu().numpy()[0]

        optimizer.step()
        optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_semi_value))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir,
                         'VOC_' + str(args.num_steps) + '_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '.pth'))
            torch.save(
                model_D.state_dict(),
                osp.join(args.snapshot_dir, 'VOC_' + str(i_iter) + '_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Example #12
0
def main():
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True
    gpu = args.gpu
    np.random.seed(args.random_seed)

    # create network
    model = Res_Deeplab(num_classes=args.num_classes)

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model.cuda(args.gpu)

    cudnn.benchmark = True

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    # load dataset
    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data is None:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

        if args.partial_id is not None:
            train_ids = pickle.load(open(args.partial_id))
            print('loading train ids from {}'.format(args.partial_id))
        else:
            train_ids = np.arange(train_dataset_size)
            np.random.shuffle(train_ids)

        pickle.dump(train_ids,
                    open(osp.join(args.snapshot_dir, 'train_id.pkl'), 'wb'))

        # labeled data
        train_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])
        train_gt_sampler = data.sampler.SubsetRandomSampler(
            train_ids[:partial_size])

        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      sampler=train_sampler,
                                      num_workers=3,
                                      pin_memory=True)
        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         sampler=train_gt_sampler,
                                         num_workers=3,
                                         pin_memory=True)

        # unlabeled data
        train_remain_sampler = data.sampler.SubsetRandomSampler(
            train_ids[partial_size:])
        trainloader_remain = data.DataLoader(train_dataset,
                                             batch_size=args.batch_size,
                                             sampler=train_remain_sampler,
                                             num_workers=3,
                                             pin_memory=True)
        trainloader_remain_iter = enumerate(trainloader_remain)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.optim_parameters(args),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # loss/bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    for i_iter in range(args.num_steps):
        loss_seg_value = 0
        loss_unlabeled_seg_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)

        for sub_i in range(args.iter_size):
            # train Segmentation
            # train with labeled images
            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.next()

            images, labels, _, _ = batch
            images = Variable(images).cuda(args.gpu)
            pred = interp(model(images))

            # computing loss
            loss_seg = loss_calc(pred, labels, args.gpu)

            # proper normalization
            loss = loss_seg / args.iter_size
            loss.backward()
            loss_seg_value += loss_seg.data.cpu().numpy() / args.iter_size

            # train with unlabeled
            if args.lambda_semi > 0 and i_iter >= args.semi_start:
                try:
                    _, batch = trainloader_remain_iter.next()
                except:
                    trainloader_remain_iter = enumerate(trainloader_remain)
                    _, batch = trainloader_remain_iter.next()

                # only access to img
                images, _, _, _ = batch
                images = Variable(images).cuda(args.gpu)

                pred = interp(model(images))
                semi_gt = pred.data.cpu().numpy().argmax(axis=1)
                semi_gt = torch.FloatTensor(semi_gt)

                loss_unlabeled_seg = args.lambda_semi * loss_calc(
                    pred, semi_gt, args.gpu)
                loss_unlabeled_seg = loss_unlabeled_seg / args.iter_size
                loss_unlabeled_seg.backward()

                loss_unlabeled_seg_value += loss_unlabeled_seg.data.cpu(
                ).numpy() / args.lambda_semi

            else:
                if args.lambda_semi > 0 and i_iter < args.semi_start:
                    loss_unlabeled_seg_value = 0

                else:
                    loss_unlabeled_seg_value = None

        optimizer.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_unlabeled_seg = {3:.3f} '
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_unlabeled_seg_value))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' + str(args.num_steps) + '_' +
                    str(args.lambda_semi) + '_' + str(args.random_seed) +
                    '.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(
                    args.snapshot_dir,
                    'VOC_' + str(i_iter) + '_' + str(args.lambda_semi) + '_' +
                    str(args.random_seed) + '.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')