Example #1
0
def load_model():
    text_model = DenseNet(classes=n_classes,
                          input_shape=image_shape,
                          depth=40,
                          growth_rate=12,
                          bottleneck=True,
                          reduction=0.5,
                          dropout_rate=0.0,
                          weight_decay=1e-4)
    text_model.load_weights(text_model_weight)
    return text_model
Example #2
0
    base_model = DenseNet(classes=n_classes,
                          input_shape=image_shape,
                          depth=args.depth,
                          growth_rate=args.growth_rate,
                          bottleneck=args.bc_mode,
                          reduction=args.reduction,
                          dropout_rate=1.0 - args.keep_prob,
                          weight_decay=args.weight_decay)

    if args.train:
        batch_size *= n_gpus

        if os.path.exists("saves/%s.weight" % model_identifier):
            print("Loading model...")
            base_model.load_weights("saves/%s.weight" % model_identifier,
                                    by_name=True)

        if n_gpus > 1:
            model = multi_gpu_model(base_model, n_gpus)
        else:
            model = base_model

        def loss_func(y_true, y_pred):
            l2_loss = tf.add_n(
                [tf.nn.l2_loss(var) for var in model.trainable_weights])
            return categorical_crossentropy(y_true, y_pred) + l2_loss * 1e-4

        optimizer = SGD(lr=initial_learning_rate,
                        clipvalue=0.5,
                        momentum=0.9,
                        decay=1e-4,
Example #3
0
# Start Tensorflow session
with tf.Session() as sess:
    # Initialize all variables
    ckpt = tf.train.get_checkpoint_state(checkpoint_path)
    if ckpt and ckpt.model_checkpoint_path:
        pass
    else:
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())


    # Load the pretrained weights into the non-trainable layer
    if pretrain and mode == 'alexnet':
        model.load_initial_weights(sess)
    elif pretrain and mode == 'densenet':
        model_op.load_weights()
    elif pretrain and mode == 'resnet':
        raise ValueError("Invalid pretrain for resnet") 
    
    if ckpt and ckpt.model_checkpoint_path:
        print('Training from saved model ...')
        saver.restore(sess, ckpt.model_checkpoint_path)
        graph = tf.get_default_graph()
    
    # Add the model graph to TensorBoard
    writer.add_graph(sess.graph)

    print("{} Start training...".format(datetime.now()))
    print("{} Open Tensorboard at --logdir {}".format(datetime.now(),
                                                      filewriter_path))