def __init__(self, n_channels): super(BiFPN, self).__init__() self.conv_4_td = DWSConv(n_channels, n_channels, relu=False) self.conv_5_td = DWSConv(n_channels, n_channels, relu=False) self.conv_6_td = DWSConv(n_channels, n_channels, relu=False) self.weights_4_td = nn.Parameter(torch.ones(2)) self.weights_5_td = nn.Parameter(torch.ones(2)) self.weights_6_td = nn.Parameter(torch.ones(2)) self.conv_3_out = DWSConv(n_channels, n_channels, relu=False) self.conv_4_out = DWSConv(n_channels, n_channels, relu=False) self.conv_5_out = DWSConv(n_channels, n_channels, relu=False) self.conv_6_out = DWSConv(n_channels, n_channels, relu=False) self.conv_7_out = DWSConv(n_channels, n_channels, relu=False) self.weights_3_out = nn.Parameter(torch.ones(2)) self.weights_4_out = nn.Parameter(torch.ones(3)) self.weights_5_out = nn.Parameter(torch.ones(3)) self.weights_6_out = nn.Parameter(torch.ones(3)) self.weights_7_out = nn.Parameter(torch.ones(2)) self.upsample = lambda x: F.interpolate( x, scale_factor=self.REDUCTION_RATIO) self.downsample = MaxPool2dSamePad(self.REDUCTION_RATIO + 1, self.REDUCTION_RATIO) self.act = Swish()
def __init__(self, in_channels, num_anchors, num_layers, pyramid_levels=5, onnx_export=False): super(Regressor, self).__init__() self.num_layers = num_layers self.conv_list = nn.ModuleList( [SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]) self.bn_list = nn.ModuleList( [nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in range(pyramid_levels)]) self.header = SeparableConvBlock(in_channels, num_anchors * 4, norm=False, activation=False) self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def __init__(self, n_features, out_channels, n_repeats): super(HeadNet, self).__init__() self.convs = nn.ModuleList() self.bns = nn.ModuleList() for _ in range(n_repeats): self.convs.append( DWSConv(n_features, n_features, bath_norm=False, relu=False)) bn_levels = nn.ModuleList() for _ in range(cfg.NUM_LEVELS): bn = nn.BatchNorm2d(n_features, eps=1e-3, momentum=0.01) bn_levels.append(bn) self.bns.append(bn_levels) self.act = Swish() self.head = DWSConv(n_features, out_channels, bath_norm=False, relu=False, bias=True)
def __init__(self, in_channels, out_channels, bath_norm=True, relu=True, bias=False): super(DepthWiseSeparableConvModule, self).__init__() self.conv_dw = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, groups=in_channels, bias=False) self.conv_pw = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0, bias=bias) self.bn = None if not bath_norm else \ nn.BatchNorm2d(out_channels, eps=1e-3, momentum=0.01) self.act = None if not relu else Swish()
def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False): super(SeparableConvBlock, self).__init__() if out_channels is None: out_channels = in_channels # Q: whether separate conv # share bias between depthwise_conv and pointwise_conv # or just pointwise_conv apply bias. # A: Confirmed, just pointwise_conv applies bias, depthwise_conv has no bias. self.depthwise_conv = Conv2dStaticSamePadding(in_channels, in_channels, kernel_size=3, stride=1, groups=in_channels, bias=False) self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1) self.norm = norm if self.norm: # Warning: pytorch momentum is different from tensorflow's, momentum_pytorch = 1 - momentum_tensorflow self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3) self.activation = activation if self.activation: self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True, use_p8=False): """ Args: num_channels: conv_channels: first_time: whether the input comes directly from the efficientnet, if True, downchannel it first, and downsample P5 to generate P6 then P7 epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon onnx_export: if True, use Swish instead of MemoryEfficientSwish """ super(BiFPN, self).__init__() self.epsilon = epsilon self.use_p8 = use_p8 # Conv layers self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) if use_p8: self.conv7_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv8_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) # Feature scaling layers self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_downsample = MaxPool2dStaticSamePadding(3, 2) self.p5_downsample = MaxPool2dStaticSamePadding(3, 2) self.p6_downsample = MaxPool2dStaticSamePadding(3, 2) self.p7_downsample = MaxPool2dStaticSamePadding(3, 2) if use_p8: self.p7_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p8_downsample = MaxPool2dStaticSamePadding(3, 2) self.swish = MemoryEfficientSwish() if not onnx_export else Swish() self.first_time = first_time if self.first_time: self.p5_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p4_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p3_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[0], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p5_to_p6 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), MaxPool2dStaticSamePadding(3, 2) ) self.p6_to_p7 = nn.Sequential( MaxPool2dStaticSamePadding(3, 2) ) if use_p8: self.p7_to_p8 = nn.Sequential( MaxPool2dStaticSamePadding(3, 2) ) self.p4_down_channel_2 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p5_down_channel_2 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) # Weight self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p6_w1_relu = nn.ReLU() self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p5_w1_relu = nn.ReLU() self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p4_w1_relu = nn.ReLU() self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p3_w1_relu = nn.ReLU() self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p4_w2_relu = nn.ReLU() self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p5_w2_relu = nn.ReLU() self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p6_w2_relu = nn.ReLU() self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p7_w2_relu = nn.ReLU() self.attention = attention
def set_swish(self, memory_efficient=True): """Sets swish function as memory efficient (for training) or standard (for export)""" self._swish = MemoryEfficientSwish() if memory_efficient else Swish() for block in self._blocks: block.set_swish(memory_efficient)