Example #1
0
    def __init__(self, config, gpu_list, *args, **params):
        super(DEC, self).__init__()

        self.sentence_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.document_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.sentence_attention = Attention(config, gpu_list, *args, **params)
        self.document_attention = Attention(config, gpu_list, *args, **params)
Example #2
0
    def __init__(self, config, gpu_list, *args, **params):
        super(Model, self).__init__()

        self.hidden_size = config.getint("model", "hidden_size")
        self.word_num = 0
        f = open(config.get("data", "word2id"), "r", encoding="utf8")
        for line in f:
            self.word_num += 1

        self.embedding = nn.Embedding(self.word_num, self.hidden_size)
        self.context_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.question_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        # self.attention = Attention(config, gpu_list, *args, **params)
        self.resnet = resnet50(pretrained=True)
        # self.seresnet = seresnet50(pretrained=True)
        # self.densenet = densenet121(pretrained=True)

        self.res_module = nn.Linear(1000, 16)
        self.fc_module = nn.Linear(16 + 1, 4)

        self.criterion = nn.CrossEntropyLoss()
        self.dropout = nn.Dropout(config.getfloat("model", "dropout"))
        self.softmax = nn.Softmax(dim=1)
        # self.rouge_module = nn.Linear(1000, 4)
        self.accuracy_function = single_label_top1_accuracy
Example #3
0
    def __init__(self, config, gpu_list, *args, **params):
        super(CAPSModel, self).__init__()

        self.hidden_size = config.getint("model", "hidden_size")
        self.word_num = 0
        f = open(config.get("data", "word2id"), "r", encoding="utf8")
        for line in f:
            self.word_num += 1

        self.embedding = nn.Embedding(self.word_num, self.hidden_size)
        self.context_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.question_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.attention = Attention(config, gpu_list, *args, **params)

        self.num_classes = 4
        # self.conv_channel = config.getint("data", "max_question_len") + config.getint("data", "max_option_len")

        self.dim_capsule = config.getint("model", "dim_capsule")
        self.num_compressed_capsule = config.getint("model",
                                                    "num_compressed_capsule")
        self.ngram_size = [2, 4, 8]
        self.convs_doc = nn.ModuleList([
            nn.Conv1d(self.hidden_size, 32, K, stride=2)
            for K in self.ngram_size
        ])
        torch.nn.init.xavier_uniform_(self.convs_doc[0].weight)
        torch.nn.init.xavier_uniform_(self.convs_doc[1].weight)
        torch.nn.init.xavier_uniform_(self.convs_doc[2].weight)

        self.primary_capsules_doc = PrimaryCaps(num_capsules=self.dim_capsule,
                                                in_channels=32,
                                                out_channels=32,
                                                kernel_size=1,
                                                stride=1)

        self.flatten_capsules = FlattenCaps()

        self.W_doc = nn.Parameter(
            torch.FloatTensor(49024, self.num_compressed_capsule))
        torch.nn.init.xavier_uniform_(self.W_doc)

        self.fc_capsules_doc_child = FCCaps(
            config,
            output_capsule_num=self.num_classes,
            input_capsule_num=self.num_compressed_capsule,
            in_channels=self.dim_capsule,
            out_channels=self.dim_capsule)

        # self.rank_module = nn.Linear(hidden_size, 1)

        # self.criterion = nn.CrossEntropyLoss()
        self.bce = nn.BCELoss(reduction='mean')

        self.fc_module = nn.Linear(self.dim_capsule, self.num_classes)
        self.accuracy_function = multi_label_top1_accuracy
Example #4
0
    def __init__(self, config, gpu_list, *args, **params):
        super(Model, self).__init__()

        self.hidden_size = config.getint("model", "hidden_size")
        self.word_num = 0
        f = open(config.get("data", "word2id"), "r", encoding="utf8")
        for line in f:
            self.word_num += 1

        self.embedding = nn.Embedding(self.word_num, self.hidden_size)
        self.context_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.question_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.attention = Attention(config, gpu_list, *args, **params)

        self.rank_module = nn.Linear(self.hidden_size * 2, 1)

        self.criterion = nn.CrossEntropyLoss()

        self.multi_module = nn.Linear(4, 16)
        self.accuracy_function = single_label_top1_accuracy
Example #5
0
    def __init__(self, config, gpu_list, *args, **params):
        super(ModelS, self).__init__()

        self.hidden_size = config.getint("model", "hidden_size")
        self.word_num = 0
        f = open(config.get("data", "word2id"), "r", encoding="utf8")
        for line in f:
            self.word_num += 1

        self.context_len = config.getint("data", "max_option_len") * 4
        self.question_len = config.getint("data", "max_question_len")

        self.embedding = nn.Embedding(self.word_num, self.hidden_size)
        self.context_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.question_encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.attention = Attention(config, gpu_list, *args, **params)
        self.dropout = nn.Dropout(config.getfloat("model", "dropout"))

        self.bce = nn.MultiLabelSoftMarginLoss(reduction='sum')
        self.gelu = nn.GELU()
        # self.fc_module_q = nn.Linear(self.question_len, 1)
        self.fc_module = nn.Linear(self.hidden_size * 2, 4)
        self.accuracy_function = multi_label_top1_accuracy
Example #6
0
    def __init__(self, config, gpu_list, *args, **params):
        super(BiDAF, self).__init__()

        self.hidden_size = config.getint("model", "hidden_size")

        self.embedding = nn.Embedding(
            len(json.load(open(config.get("data", "word2id")))),
            config.getint("model", "hidden_size"))
        self.encoder = LSTMEncoder(config, gpu_list, *args, **params)
        self.attention = Attention(config, gpu_list, *args, **params)

        self.fc = nn.Linear(self.hidden_size * 2, 1)

        self.criterion = cross_entropy_loss
        self.accuracy_function = single_label_top1_accuracy