pretrained=True, class_agnostic=args.class_agnostic) elif args.net == 'res18': if args.coco: fasterRCNN = resnet(range(81), 18, pretrained=False, class_agnostic=args.class_agnostic) else: fasterRCNN = resnet(pascal_classes, 18, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'squeeze': fasterRCNN = squeeze(pascal_classes, pretrained=True, class_agnostic=args.class_agnostic) elif args.net == 'alex': fasterRCNN = alex(pascal_classes, pretrained=True, class_agnostic=args.class_agnostic) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() # print(fasterRCNN) print("load checkpoint %s" % (load_name)) if args.cuda > 0: checkpoint = torch.load(load_name) else:
18, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res10': fasterRCNN = resnet(imdb.classes, 10, pretrained=True, class_agnostic=args.class_agnostic) elif args.net == 'res152': fasterRCNN = resnet(imdb.classes, 152, pretrained=True, class_agnostic=args.class_agnostic) elif args.net == 'squeeze': fasterRCNN = squeeze(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic) elif args.net == 'alex': fasterRCNN = alex(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() lr = cfg.TRAIN.LEARNING_RATE lr = args.lr params = []