Example #1
0
        # training
        strides = [8, 16, 32, 64, 128]
        limit_range = [[-1, 64], [64, 128], [128, 256], [256, 512],
                       [512, 999999]]

        # inference
        score_threshold = 0.3
        nms_iou_threshold = 0.2
        max_detection_boxes_num = 20

    model = FCOSDetector(mode="inference", config=Config)
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    model = torch.nn.DataParallel(model)
    model.load_state_dict(
        torch.load("./checkpoint/coco_37.2.pth",
                   map_location=torch.device('cpu')))
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model = model.eval()
    print("===>success loading model")

    import os

    root = "./out_images/"
    names = os.listdir(root)
    for name in names:
        img_bgr = cv2.imread(root + name)
        img_pad = preprocess_img(img_bgr, [800, 1333])
        img = cv2.cvtColor(img_pad.copy(), cv2.COLOR_BGR2RGB)
        img1 = transforms.ToTensor()(img)
    from dataset.VOC_dataset import VOCDataset
    from model.config import DefaultConfig 

    config = DefaultConfig
    eval_dataset = VOCDataset(root_dir='/data/Datasets/voc/VOCdevkit/VOC2007', resize_size=[640, 800],
                               split='test', use_difficult=False, is_train=False, augment=None, mean=config.mean, std=config.std)
    print("INFO===>eval dataset has %d imgs"%len(eval_dataset))
    eval_loader=torch.utils.data.DataLoader(eval_dataset,batch_size=1,shuffle=False,collate_fn=eval_dataset.collate_fn)

    model=FCOSDetector(mode="inference")
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    model = torch.nn.DataParallel(model)
    #model.load_state_dict(torch.load("./darknet19_ms_60epochs/model_59.pth",map_location=torch.device('cpu')))
    #model.load_state_dict(torch.load("./finetune_darknet_lasso0.3/model_slim_10.pth", map_location=torch.device('cpu')))
    model.load_state_dict(torch.load("./darknet19_ms_2x_lasso_v1_lambda5e_1_from_scratch/model_21.pth", map_location=torch.device('cpu')))
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model=model.cuda().eval()
    print("===>success loading model")

    gt_boxes=[]
    gt_classes=[]
    pred_boxes=[]
    pred_classes=[]
    pred_scores=[]
    num=0
    for img,boxes,classes in eval_loader:
        with torch.no_grad():
            out=model(img.cuda())
            pred_boxes.append(out[2][0].cpu().numpy())
Example #3
0
        #training
        strides = [8, 16, 32, 64, 128]
        limit_range = [[-1, 64], [64, 128], [128, 256], [256, 512],
                       [512, 999999]]

        #inference
        score_threshold = 0.2
        nms_iou_threshold = 0.5
        max_detection_boxes_num = 150

    model = FCOSDetector(mode="inference", config=Config)
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    # model.load_state_dict(torch.load("/mnt/hdd1/benkebishe01/fcos/voc2012_512x800_epoch59_loss0.5531.pth",map_location=torch.device('cpu')))
    model.load_state_dict(
        torch.load(
            "/mnt/hdd1/benkebishe01/fcos/voc2012_512x800_epoch59_loss0.5531.pth"
        ))
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model = model.cuda().eval()
    print("===>success loading model")

    import os
    root = "./test_images/"
    names = os.listdir(root)
    for name in names:
        img_bgr = cv2.imread(root + name)
        img_pad = preprocess_img(img_bgr, [512, 512])
        img_rgb = cv2.cvtColor(img_pad.copy(), cv2.COLOR_BGR2RGB)
        img1 = transforms.ToTensor()(img_rgb)
        # img=img_pad.copy().transpose(2, 0, 1)
Example #4
0
    # write output
    json.dump(results, open('coco_bbox_results.json', 'w'), indent=4)
    # json.dump(image_ids, open('{}_processed_image_ids.json'.format(generator.set_name), 'w'), indent=4)

    # load results in COCO evaluation tool
    coco_true = generator.coco
    coco_pred = coco_true.loadRes('coco_bbox_results.json')

    # run COCO evaluation
    coco_eval = COCOeval(coco_true, coco_pred, 'bbox')
    coco_eval.params.imgIds = image_ids
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
    return coco_eval.stats


if __name__ == "__main__":
    generator = COCOGenerator(
        "./data/coco/coco2017/val2017",
        "./data/coco/coco2017/annotations/instances_val2017.json")
    model = FCOSDetector(mode="inference")
    model = torch.nn.DataParallel(model)
    model = model.cuda().eval()
    mode_path = './checkpoint/coco_37.2.pth'
    mode_path = './checkpoint/coco2017/model_10.pth'
    model.load_state_dict(
        torch.load(mode_path, map_location=torch.device('cpu')))
    evaluate_coco(generator, model)
Example #5
0
        # lr = lr*warmup_factor
        lr = float(GLOBAL_STEPS / WARMPUP_STEPS * LR_INIT)
    else:
        for i in range(len(lr_schedule)):
            if step < lr_schedule[i]:
                break
            lr *= 0.1
    return float(lr)


model.train()

init_epoch = 0
if opt.resume:
    checkpoint = torch.load(opt.resumed_path)
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    initepoch = checkpoint['epoch'] + 1
    GLOBAL_STEPS = checkpoint['GLOBAL_STEPS']

for epoch in range(init_epoch, EPOCHS):
    base = 0.1
    lr = LR_INIT

    def update_lr(lr, base):
        lr = LR_INIT * base
        for param in optimizer.param_groups:
            param['lr'] = lr
        base *= 0.1
        return lr, base
Example #6
0
    from model.fcos import FCOSDetector
    from demo import convertSyncBNtoBN
    from dataloader.VOC_dataset import VOCDataset

    eval_dataset = VOCDataset(cfg.dataset_dir,
                              resize_size=cfg.image_scale,
                              split='val')
    print("INFO===>eval dataset has %d imgs" % len(eval_dataset))
    eval_loader = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=1,
        shuffle=False,
        collate_fn=eval_dataset.collate_fn)
    model = FCOSDetector(mode="inference")
    model.load_state_dict(
        torch.load("voc2012_512x800_epoch61_loss0.7096.pth",
                   map_location=torch.device('cpu')))
    model = model.cuda().eval()
    print("===>success loading model")

    gt_boxes = []
    gt_classes = []
    pred_boxes = []
    pred_classes = []
    pred_scores = []
    num = 0
    for img, boxes, classes in eval_loader:
        with torch.no_grad():
            out = model(img.cuda())
            pred_boxes.append(out[2][0].cpu().numpy())
            pred_classes.append(out[1][0].cpu().numpy())
Example #7
0
import cv2
from model.fcos import FCOSDetector
import torch
from torchvision import transforms
import numpy as np
from dataloader.VOC_dataset import VOCDataset
import time
import os
from model.config import DefaultConfig as cfg

if __name__ == "__main__":
    model = FCOSDetector(mode="inference", config=cfg)
    model.load_state_dict(
        torch.load("FCOSMASK_epoch61_loss1.0623.pth",
                   map_location=torch.device('cpu')))
    model = model.cuda().eval()
    print("===>success loading model")
    root = cfg.inference_dir
    names = os.listdir(root)
    for name in names:
        img_pad = cv2.imread(root + name)
        img = img_pad.copy()
        img_t = torch.from_numpy(img).float().permute(2, 0, 1)
        img1 = transforms.Normalize([102.9801, 115.9465, 122.7717],
                                    [1., 1., 1.])(img_t)
        img1 = img1.cuda()

        start_t = time.time()
        with torch.no_grad():
            out = model(img1.unsqueeze_(dim=0))
        end_t = time.time()
Example #8
0
    eval_dataset = VOCDataset("/home/data/voc2007_2012/VOCdevkit/VOC2012",
                              resize_size=[800, 1024],
                              split='val2007')
    print("INFO===>eval dataset has %d imgs" % len(eval_dataset))
    eval_loader = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=1,
        shuffle=False,
        collate_fn=eval_dataset.collate_fn)

    model = FCOSDetector(mode="inference")
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    model.load_state_dict(
        torch.load(
            "./logs/voc20172012_multigpu_800x1024_epoch27_loss0.5987.pth",
            map_location=torch.device('cpu')))
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model = model.cuda().eval()
    print("===>success loading model")

    gt_boxes = []
    gt_classes = []
    pred_boxes = []
    pred_classes = []
    pred_scores = []
    num = 0
    for img, boxes, classes in eval_loader:
        with torch.no_grad():
            out = model(img.cuda())
Example #9
0
        nms_iou_threshold = 0.5
        max_detection_boxes_num = 500

    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    model = FCOSDetector(mode="inference", config=Config)
    # model = torch.nn.DataParallel(model)
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    # model.load_state_dict(torch.load("/mnt/hdd1/benkebishe01/FCOS/fcos_val/voc2012_epoch80_loss1.1556.pth"))
    # model.load_state_dict(torch.load("/mnt/hdd1/benkebishe01/FCOS/diou/new_voc3/voc_epoch25_loss1.1657.pth"))
    model.load_state_dict(
        torch.load(
            "/mnt/hdd1/benkebishe01/dianwang/five/new1.0/voc_epoch29_loss0.3873.pth"
        ))
    # retinanet_kmean_ml/voc_epoch20_loss0.1154.pth
    # retinanet_ml_new/voc_epoch24_loss0.1074.pth
    # model.load_state_dict(torch.load("/mnt/hdd1/benkebishe01/FCOS/fcos_without_sample/voc2012_epoch74_loss0.9278.pth", map_location=torch.device('cpu')))
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model = model.to(device).eval()
    print("===>success loading model")

    import os

    root = "./images/test_new/"
    names = os.listdir(root)
    for name in names:
        img_in = cv2.imread(root + name)
Example #10
0
from model.fcos import FCOSDetector
import torch
from dataloader.VOC_dataset import VOCDataset
import math,time
from torch.utils.tensorboard import SummaryWriter
from model.config import DefaultConfig as cfg

train_dataset=VOCDataset(cfg.dataset_dir,resize_size=cfg.image_scale,split='train')
val_dataset=VOCDataset(cfg.dataset_dir,resize_size=[512,800],split='val')

model=FCOSDetector(mode="training").cuda()
if cfg.resume_path:
    model.load_state_dict(torch.load(cfg.resume_path))
optimizer=torch.optim.Adam(model.parameters(),lr=1e-4)

BATCH_SIZE=cfg.BATCH_SIZE
EPOCHS=cfg.EPOCHS
WARMPUP_STEPS_RATIO=cfg.WARMPUP_STEPS_RATIO

train_loader=torch.utils.data.DataLoader(train_dataset,batch_size=BATCH_SIZE,shuffle=True,collate_fn=train_dataset.collate_fn)
val_loader=torch.utils.data.DataLoader(val_dataset,batch_size=BATCH_SIZE,shuffle=True,collate_fn=val_dataset.collate_fn)
steps_per_epoch=len(train_dataset)//BATCH_SIZE
TOTAL_STEPS=steps_per_epoch*EPOCHS
WARMPUP_STEPS=TOTAL_STEPS*WARMPUP_STEPS_RATIO

GLOBAL_STEPS=cfg.GLOBAL_STEPS
LR_INIT=cfg.LR_INIT
LR_END=cfg.LR_END

writer=SummaryWriter(log_dir="./logs")
Example #11
0
    #     ##scene_head_para
    #     input_channel=512
    #     output_channel=512
    #     pooling_size=3
    #     output_class=10
    # from model.config import DefaultConfig

    # DefaultConfig.score_threshold=0.3

    model = FCOSDetector(mode="inference").cuda()
    model = torch.nn.DataParallel(model)
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    model.load_state_dict(
        torch.load(
            "shidudi1e4Diormixupmuti_label_simgoid0.4_0.0001_50_C3_C4_C5_conc_max_pooling_192fcos_8001024_epoch60_loss0.0774.pth",
            map_location=torch.device('cuda')), False)

    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model = model.cuda().eval()
    print("===>success loading model")

    import os
    root = "./test_images/"
    names = os.listdir(root)
    for name in names:
        img_bgr = cv2.imread(root + name)
        img_pad = preprocess_img(img_bgr, [800, 1024])
        # img=cv2.cvtColor(img_pad.copy(),cv2.COLOR_BGR2RGB)
        img = img_pad.copy()
Example #12
0
        #training
        strides = [8, 16, 32, 64, 128]
        limit_range = [[-1, 64], [64, 128], [128, 256], [256, 512],
                       [512, 999999]]

        #inference
        score_threshold = 0.2
        nms_iou_threshold = 0.5
        max_detection_boxes_num = 150

    model = FCOSDetector(mode="inference", config=Config)
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    model.load_state_dict(
        torch.load("./convert_weights/FCOS_R_50_FPN_1x_my.pth",
                   map_location=torch.device('cpu')))
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model = model.cuda().eval()
    print("===>success loading model")

    import os
    root = "./test_images/"
    names = os.listdir(root)
    for name in names:
        img_bgr = cv2.imread(root + name)
        img_pad = preprocess_img(img_bgr, [800, 1024])
        # img=cv2.cvtColor(img_pad.copy(),cv2.COLOR_BGR2RGB)
        img = img_pad.copy()
        img_t = torch.from_numpy(img).float().permute(2, 0, 1)
Example #13
0
            "global_steps:%d epoch:%d steps:%d/%d cls_loss:%.4f cnt_loss:%.4f reg_loss:%.4f cost_time:%dms lr=%.4e total_loss:%.4f" % \
            (GLOBAL_STEPS, epoch + 1, epoch_step + 1, steps_per_epoch, losses[0].mean(), losses[1].mean(),
             losses[2].mean(), cost_time, lr, loss.mean()))
        GLOBAL_STEPS += 1

    for idx in range(4):
        summary.add_scalar(loss_list[idx], losses[idx][0], epoch)
    torch.save(model.state_dict(),
               "./checkpoint2/model_{}.pth".format(epoch + 1))

    # if epoch + 1 > 23:
    model2 = FCOSDetector(mode="inference")
    model2 = torch.nn.DataParallel(model2)
    model2 = model2.cuda().eval()
    model2.load_state_dict(torch.load(
        "./checkpoint2/model_{}.pth".format(epoch + 1),
        map_location=torch.device('cuda:1')),
                           strict=False)
    tt = coco_eval.evaluate_coco(val_dataset, model2)
    m_acc = tt[4].astype(float)
    if m_acc > best_acc:
        best_acc = m_acc
        best_ep = epoch + 1

    data_ = dict()
    for idx, key in enumerate(eval_list):
        summary.add_scalar(key, tt[idx].astype(float), epoch)
    print("Best Acc of Medium : {0}, Best Ep of Medium : {1}".format(
        best_acc, best_ep))

summary.close()
Example #14
0
                                                     img_size=512,
                                                     transform=transform,
                                                     train=False),
                                             batch_size=64,
                                             shuffle=False)

    # eval_dataset=VOCDataset("/home/data/voc2007_2012/VOCdevkit/VOC2012",resize_size=[800,1024],split='val2007')
    # print("INFO===>eval dataset has %d imgs"%len(eval_dataset))
    # eval_loader=torch.utils.data.DataLoader(eval_dataset,batch_size=1,shuffle=False,collate_fn=eval_dataset.collate_fn)

    model = FCOSDetector(mode="inference")
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    # model.load_state_dict(torch.load("./logs/voc20172012_multigpu_800x1024_epoch27_loss0.5987.pth", map_location=torch.device('cpu')))
    model.load_state_dict(
        torch.load(
            "/mnt/hdd1/benkebishe01/FCOS/diou/60epoch/9nocnt_norm/voc_epoch51_loss0.2903.pth"
        ))
    # model.load_state_dict(torch.load("/mnt/hdd1/benkebishe01/FCOS/diou/new_voc3/voc_epoch80_loss0.8905.pth"))
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    # model = model.cuda().eval()
    model = model.to(device).eval()
    print("===>success loading model")

    gt_boxes = []
    gt_classes = []
    pred_boxes = []
    pred_classes = []
    pred_scores = []
    num = 0
    for img, boxes, classes, _, _ in val_loader:
Example #15
0
            # append detection to results
            results.append(image_result)

        # append image to list of processed images
        # image_ids.append(generator.ids[index])

    if not len(results):
        return

    # write output
    json.dump(results, open('coco_bbox_results.json', 'w'), indent=4)
    # json.dump(image_ids, open('{}_processed_image_ids.json'.format(generator.set_name), 'w'), indent=4)

    # load results in COCO evaluation tool
    coco_true = generator.coco
    coco_pred = coco_true.loadRes('coco_bbox_results.json')

    # run COCO evaluation
    coco_eval = COCOeval(coco_true, coco_pred, 'bbox')
    coco_eval.params.imgIds = image_ids
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
    return coco_eval.stats

if __name__ == "__main__":
    generator=COCOGenerator("/home/data/coco2017/val2017","/home/data/coco2017/instances_val2017.json")
    model=FCOSDetector(mode="inference")
    model.load_state_dict(torch.load("./logs/1121/coco2017_multigpu_800x1024_epoch4_loss1.2863.pth",map_location=torch.device('cpu')))
    evaluate_coco(generator,model)
Example #16
0
@Author: xxxmy
@Github: github.com/VectXmy
@Date: 2019-09-26
@Email: [email protected]
'''
from model.fcos import FCOSDetector
import torch
from dataloader.VOC_dataset import VOCDataset
import math,time
from torch.utils.tensorboard import SummaryWriter

train_dataset=VOCDataset("/home/xht/voc2012/VOCdevkit/VOC2012",resize_size=[512,800],split='train')
val_dataset=VOCDataset("/home/xht/voc2012/VOCdevkit/VOC2012",resize_size=[512,800],split='val')

model=FCOSDetector(mode="training").cuda()
model.load_state_dict(torch.load("./checkpoints/voc_512x800_loss2.0635.pth"))
optimizer=torch.optim.Adam(model.parameters(),lr=1e-4)

BATCH_SIZE=6
EPOCHS=30
WARMPUP_STEPS_RATIO=0.12
train_loader=torch.utils.data.DataLoader(train_dataset,batch_size=BATCH_SIZE,shuffle=True,collate_fn=train_dataset.collate_fn)
val_loader=torch.utils.data.DataLoader(val_dataset,batch_size=BATCH_SIZE,shuffle=True,collate_fn=val_dataset.collate_fn)
steps_per_epoch=len(train_dataset)//BATCH_SIZE
TOTAL_STEPS=steps_per_epoch*EPOCHS
WARMPUP_STEPS=TOTAL_STEPS*WARMPUP_STEPS_RATIO

GLOBAL_STEPS=1
LR_INIT=5e-5
LR_END=1e-6
        #training
        strides = [8, 16, 32, 64, 128]
        limit_range = [[-1, 64], [64, 128], [128, 256], [256, 512],
                       [512, 999999]]

        #inference
        score_threshold = 0.3
        nms_iou_threshold = 0.4
        max_detection_boxes_num = 300

    model = FCOSDetector(mode="inference", config=Config)
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    model = torch.nn.DataParallel(model)
    model.load_state_dict(
        torch.load("./checkpoint/voc_78.7.pth",
                   map_location=torch.device('cpu')))
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model = model.eval()
    print("===>success loading model")

    import os
    root = "./test_images/"
    names = os.listdir(root)
    for name in names:
        img_bgr = cv2.imread(root + name)
        img_pad = preprocess_img(img_bgr, [800, 1333])
        img = cv2.cvtColor(img_pad.copy(), cv2.COLOR_BGR2RGB)
        img1 = transforms.ToTensor()(img)
        img1 = transforms.Normalize([0.485, 0.456, 0.406],
Example #18
0
    model_path = './checkpoint/simo/model_8_800_1200_45.pth'
    model_path = './checkpoint/simo_asff/model_8_800_1200_50.pth'
    model_path = './checkpoint/effi_lite_simo/model_8_512_512_45.pth'
    model_path = './checkpoint/effi_lite_mimo/model_8_512_512_41.pth'
    model_path = './checkpoint/effi_lite_mimo/model_8_608_608_45.pth'
    model_path = './checkpoint/effi_lite_mimo/model_8_640_640_60.pth'
    model_path = './checkpoint/simo_dcn/model_8_720_1024_50.pth'
    model_path = './checkpoint/simo_fpn_dcn/model_8_720_1024_50.pth'
    model_path = './checkpoint/simo_fpn_dcn_focal/model_8_720_1024_45.pth'
    model_path = './checkpoint/dcn_simo/model_8_720_1024_60.pth'
    model_path = './checkpoint/simo_3d_maxf/model_8_720_1024_45.pth'
    if opt.checkpoint:
        model_path = opt.checkpoint
#     model_path = './checkpoint/simo_ircnn/model_8_720_1024_45.pth'
#     model_path = './checkpoint/voc_77.8.pth'
    model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=opt.strict)
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model = model.cuda().eval()
    print("===>success loading model")

    gt_boxes=[]
    gt_classes=[]
    pred_boxes=[]
    pred_classes=[]
    pred_scores=[]
    num=0
    for img,boxes,classes in eval_loader:
        with torch.no_grad():
            out=model(img.cuda())
            pred_boxes.append(out[2][0].cpu().numpy())
Example #19
0
                                             shuffle=False)
    draw = False
    if draw:
        writer = SummaryWriter(comment='voc_mAP')

    model = FCOSDetector(mode="inference")
    # model.load_state_dict(torch.load("/mnt/hdd1/benkebishe01/FCOS/80epoch/fcos_voc_3/voc_epoch80_loss0.8893.pth"))
    model = model.to(device).eval()
    print("===>success loading model")

    names = os.listdir(model_root)
    names = sorted(names, key=functools.cmp_to_key(compare))

    for name in names:
        # print(name)
        model.load_state_dict(torch.load(os.path.join(model_root + "/" +
                                                      name)))

        gt_boxes = []
        gt_classes = []
        pred_boxes = []
        pred_classes = []
        pred_scores = []
        num = 0
        for img, boxes, classes, _, _ in val_loader:
            with torch.no_grad():
                # out = model(img.cuda())
                out = model(img.to(device))
                # xxx = out[2][0]
                # yyy = out[1][0]
            for i in range(boxes.shape[0]):
                pred_boxes.append(out[2][i].cpu().numpy())
Example #20
0
        "D:\\Research\\My_tamper_detect_dataset_train_val_test\\voc_dataset_tmp",
        resize_size=[800, 1024],
        split='test')
    print("INFO===>eval dataset has %d imgs" % len(eval_dataset))
    eval_loader = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=1,
        shuffle=False,
        collate_fn=eval_dataset.collate_fn)

    model = FCOSDetector(mode="inference")
    # model=torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    # print("INFO===>success convert BN to SyncBN")
    ## model.load_state_dict(torch.load("./logs/voc20172012_multigpu_800x1024_epoch27_loss0.5987.pth",map_location=torch.device('cpu')))
    model.load_state_dict(
        torch.load(
            "./checkPoints/checkPointsTmp/voc2012_512x800_epoch25_loss0.9422.pth",
            map_location=torch.device('cpu')))
    # model=convertSyncBNtoBN(model)
    # print("INFO===>success convert SyncBN to BN")
    model = model.cuda().eval()
    print("===>success loading model")

    gt_boxes = []
    gt_classes = []
    pred_boxes = []
    pred_classes = []
    pred_scores = []
    num = 0
    for img, boxes, classes in eval_loader:
        with torch.no_grad():
            out = model(img.cuda())
Example #21
0
        "person",
        "pottedplant",
        "sheep",
        "sofa",
        "train",
        "tvmonitor",
    )



model = FCOSDetector(mode="inference", config=Config)
# model = torch.nn.DataParallel(model)
ckpt = torch.load('/mnt/hdd1/benkebishe01/FCOS/fcos_fusion/voc2012_512x512_epoch71_loss0.7739.pth')
# ckpt = torch.load('/mnt/hdd1/benkebishe01/fcos_anchor/voc2012_512x512_epoch68_loss0.7201.pth')

model.load_state_dict(ckpt)
model.to(device).eval()
print('loading weights successfully...')

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])

def preprocess_img(img, img_size=416):
    # img = np.array(img)  # h w
    img = img[..., :3]
    # pdb.set_trace()
    h, w, _ = img.shape
    dim_diff = np.abs(h - w)
    # Upper (left) and lower (right) padding
    json.dump(results, open('coco_bbox_results.json', 'w'), indent=4)
    # json.dump(image_ids, open('{}_processed_image_ids.json'.format(generator.set_name), 'w'), indent=4)

    # load results in COCO evaluation tool
    coco_true = generator.coco
    coco_pred = coco_true.loadRes('coco_bbox_results.json')

    # run COCO evaluation
    coco_eval = COCOeval(coco_true, coco_pred, 'bbox')
    coco_eval.params.imgIds = image_ids
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()

    return coco_eval.stats


if __name__ == "__main__":
    resize_ = [600, 600]
    generator = COCOGenerator(
        "/HDD/jaeha/dataset/COCO/2017/val2017",
        '/HDD/jaeha/dataset/COCO/2017/annotations/changed_instances_val2017.json',
        resize_size=resize_)
    model = FCOSDetector(mode="inference")
    model = torch.nn.DataParallel(model)
    model = model.cuda().eval()
    model.load_state_dict(torch.load("./checkpoint_dilation_300/model_48.pth",
                                     map_location=torch.device('cuda:0')),
                          strict=False)
    tmp = evaluate_coco(generator, model)