Example #1
0
    def __init__(self, sess):
        self.num_epoch = 25
        self.batch_size = 64

        self.output_size = 32
        self.sample_size = 64
        self.image_size = 108

        self.sess = sess

        self.g_bn0 = batch_norm(name='g_bn0')
        self.g_bn1 = batch_norm(name='g_bn1')
        self.g_bn2 = batch_norm(name='g_bn2')
        self.g_bn3 = batch_norm(name='g_bn3')
        self.d_bn1 = batch_norm(name='d_bn1')
        self.d_bn2 = batch_norm(name='d_bn2')
        self.d_bn3 = batch_norm(name='d_bn3')

        self.alpha = 20000
        self.beta = 1

        self.proj_dir = os.path.dirname(
            os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
        self.sample_dir = os.path.join(self.proj_dir, 'sample')
        self.data_dir = os.path.join(self.proj_dir, 'data')

        self.build_net()
Example #2
0
 def apply(self, inputs, mask, training):
     with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE) as scope:
         # [K, T, 7] tensordot [7, units] = [K, T, units]
         pointwise = tf.nn.relu(batch_norm(self.dense.apply(inputs), phase_train=training, name=self.name))
         #n [K, 1, units]
         aggregated = tf.reduce_max(pointwise, axis=1, keep_dims=True)
         # [K, T, units]
         repeated = tf.tile(aggregated, [1, cfg.VOXEL_POINT_COUNT, 1])
         # [K, T, 2 * units]
         concatenated = tf.concat([pointwise, repeated], axis=2)
         mask = tf.tile(mask, [1, 1, 2 * self.units])
         concatenated = tf.multiply(concatenated, tf.cast(mask, tf.float32))
     return concatenated
Example #3
0
def ConvMD(M,
           Cin,
           Cout,
           k,
           s,
           p,
           input,
           training,
           activation=True,
           bn=True,
           name='conv'):
    temp_p = np.array(p)
    temp_p = np.lib.pad(temp_p, (1, 1), 'constant', constant_values=(0, 0))
    with tf.variable_scope(name) as scope:
        if (M == 2):
            paddings = (np.array(temp_p)).repeat(2).reshape(4, 2)
            pad = tf.pad(input, paddings, "CONSTANT")
            temp_conv = tf.layers.conv2d(
                pad,
                Cout,
                k,
                strides=s,
                padding="valid",
                reuse=tf.AUTO_REUSE,
                name=scope,
                kernel_initializer=tf.keras.initializers.he_normal(seed=None),
                bias_initializer=tf.zeros_initializer())
        if (M == 3):
            paddings = (np.array(temp_p)).repeat(2).reshape(5, 2)
            pad = tf.pad(input, paddings, "CONSTANT")
            temp_conv = tf.layers.conv3d(
                pad,
                Cout,
                k,
                strides=s,
                padding="valid",
                reuse=tf.AUTO_REUSE,
                name=scope,
                kernel_initializer=tf.keras.initializers.he_normal(seed=None),
                bias_initializer=tf.zeros_initializer())
        if bn:
            # temp_conv = tf.layers.batch_normalization(
            #     temp_conv, axis=-1, fused=True, training=training, reuse=tf.AUTO_REUSE, name=scope)
            temp_conv = batch_norm(temp_conv, phase_train=training, name=name)
        if activation:
            return tf.nn.relu(temp_conv)
        else:
            return temp_conv
Example #4
0
    def __init__(self, training, batch_size, name=''):
        super(FeatureNet, self).__init__()
        self.training = training
        self.name = name
        # scalar
        self.batch_size = batch_size
        # [ΣK, 35/45, 7]
        self.feature = tf.placeholder(
            tf.float32, [None, cfg.VOXEL_POINT_COUNT, 7], name='feature')
        # [ΣK]
        self.number = tf.placeholder(tf.int64, [None], name='number')
        # [ΣK, 4], each row stores (batch, d, h, w)
        self.coordinate = tf.placeholder(
            tf.int64, [None, 4], name='coordinate')

        with tf.variable_scope(name, reuse=tf.AUTO_REUSE) as scope:
            self.vfe1 = VFELayer(32, 'VFE-1')
            self.vfe2 = VFELayer(128, 'VFE-2')
            # YUN: Add this line to coincide with original paper and official code
            self.dense = tf.layers.Dense(
                128, None, name='dense', _reuse=tf.AUTO_REUSE, _scope=scope,
                kernel_initializer=tf.keras.initializers.he_normal(seed=None),
                bias_initializer=tf.zeros_initializer())
            # YUN: Add this line to coincide with original paper and official code
            # self.batch_norm = tf.layers.BatchNormalization(
            #     name='batch_norm', fused=True, _reuse=tf.AUTO_REUSE, _scope=scope)

            # boolean mask [K, T, 2 * units]
            mask = tf.not_equal(tf.reduce_max(
                self.feature, axis=2, keep_dims=True), 0)
            x = self.vfe1.apply(self.feature, mask, self.training)
            x = self.vfe2.apply(x, mask, self.training)
            # YUN: Add this line to coincide with original paper and official code
            #FCN
            x = self.dense.apply(x)
            # YUN: Add this line to coincide with original paper and official code
            # x = self.batch_norm.apply(x, self.training)
            x = batch_norm(x, phase_train=self.training, name=name)
            x = tf.nn.relu(x)
            # [ΣK, 128]
            voxelwise = tf.reduce_max(x, axis=1)

            # car: [N * 10 * 400 * 352 * 128]
            # pedestrian/cyclist: [N * 10 * 200 * 240 * 128]
            self.outputs = tf.scatter_nd(
                self.coordinate, voxelwise, [self.batch_size, 10, cfg.INPUT_HEIGHT, cfg.INPUT_WIDTH, 128])
Example #5
0
def Deconv2D(Cin, Cout, k, s, p, input, training, bn=True, name='deconv'):
    temp_p = np.array(p)
    temp_p = np.lib.pad(temp_p, (1, 1), 'constant', constant_values=(0, 0))
    paddings = (np.array(temp_p)).repeat(2).reshape(4, 2)
    pad = tf.pad(input, paddings, "CONSTANT")
    with tf.variable_scope(name) as scope:
        temp_conv = tf.layers.conv2d_transpose(
            pad,
            Cout,
            k,
            strides=s,
            padding="SAME",
            reuse=tf.AUTO_REUSE,
            name=scope,
            kernel_initializer=tf.keras.initializers.he_normal(seed=None),
            bias_initializer=tf.zeros_initializer())
        if bn:
            # temp_conv = tf.layers.batch_normalization(
            #     temp_conv, axis=-1, fused=True, training=training, reuse=tf.AUTO_REUSE, name=scope)
            temp_conv = batch_norm(temp_conv, phase_train=training, name=name)
        return tf.nn.relu(temp_conv)
Example #6
0
def conv2d_block(inputs,
                 n_channels,
                 kernel_size=(3, 3),
                 strides=(2, 2),
                 mode='SAME',
                 use_batch_norm=True,
                 activation='relu',
                 is_training=True,
                 data_format='NHWC',
                 conv2d_hparams=None,
                 batch_norm_hparams=None,
                 name='conv2d'):

    if not isinstance(conv2d_hparams, tf.contrib.training.HParams):
        raise ValueError(
            "The paramater `conv2d_hparams` is not of type `HParams`")

    if not isinstance(batch_norm_hparams,
                      tf.contrib.training.HParams) and use_batch_norm:
        raise ValueError(
            "The paramater `conv2d_hparams` is not of type `HParams`")

    with tf.variable_scope(name):

        if mode != 'SAME_RESNET':
            net = layers.conv2d(
                inputs,
                n_channels=n_channels,
                kernel_size=kernel_size,
                strides=strides,
                padding=mode,
                data_format=data_format,
                use_bias=not use_batch_norm,
                trainable=is_training,
                kernel_initializer=conv2d_hparams.kernel_initializer,
                bias_initializer=conv2d_hparams.bias_initializer,
            )

        else:  # Special padding mode for ResNet models
            if strides == (1, 1):

                net = layers.conv2d(
                    inputs,
                    n_channels=n_channels,
                    kernel_size=kernel_size,
                    strides=strides,
                    padding='SAME',
                    data_format=data_format,
                    use_bias=not use_batch_norm,
                    trainable=is_training,
                    kernel_initializer=conv2d_hparams.kernel_initializer,
                    bias_initializer=conv2d_hparams.bias_initializer,
                )

            else:
                rate = 1  # Unused (for 'a trous' convolutions)

                kernel_height_effective = kernel_size[0] + (kernel_size[0] -
                                                            1) * (rate - 1)

                pad_h_beg = (kernel_height_effective - 1) // 2
                pad_h_end = kernel_height_effective - 1 - pad_h_beg

                kernel_width_effective = kernel_size[1] + (kernel_size[1] -
                                                           1) * (rate - 1)

                pad_w_beg = (kernel_width_effective - 1) // 2
                pad_w_end = kernel_width_effective - 1 - pad_w_beg

                padding = [[0, 0], [pad_h_beg, pad_h_end],
                           [pad_w_beg, pad_w_end], [0, 0]]

                if data_format == 'NCHW':
                    padding = [padding[0], padding[3], padding[1], padding[2]]

                padded_inputs = tf.pad(inputs, padding)

                net = layers.conv2d(
                    padded_inputs,  # inputs,
                    n_channels=n_channels,
                    kernel_size=kernel_size,
                    strides=strides,
                    padding='VALID',
                    data_format=data_format,
                    use_bias=not use_batch_norm,
                    trainable=is_training,
                    kernel_initializer=conv2d_hparams.kernel_initializer,
                    bias_initializer=conv2d_hparams.bias_initializer,
                )

        if use_batch_norm:
            net = layers.batch_norm(
                net,
                decay=batch_norm_hparams.decay,
                epsilon=batch_norm_hparams.epsilon,
                scale=batch_norm_hparams.scale,
                center=batch_norm_hparams.center,
                is_training=is_training,
                data_format=data_format,
                param_initializers=batch_norm_hparams.param_initializers)

        if activation == 'relu':
            net = layers.relu(net, name='relu')

        elif activation == 'tanh':
            net = layers.tanh(net, name='tanh')

        elif activation != 'linear' and activation is not None:
            raise KeyError('Invalid activation type: `%s`' % activation)

        return net
def conv2d_block(
    inputs,
    n_channels,
    kernel_size=(3, 3),
    strides=(2, 2),
    mode='SAME',
    use_batch_norm=True,
    activation='relu',
    is_training=True,
    data_format='NHWC',
    conv2d_hparams=None,
    batch_norm_hparams=None,
    name='conv2d',
    cardinality=1,
):

    if not isinstance(conv2d_hparams, tf.contrib.training.HParams):
        raise ValueError(
            "The paramater `conv2d_hparams` is not of type `HParams`")

    if not isinstance(batch_norm_hparams,
                      tf.contrib.training.HParams) and use_batch_norm:
        raise ValueError(
            "The paramater `conv2d_hparams` is not of type `HParams`")

    with tf.variable_scope(name):
        if cardinality == 1:
            net = layers.conv2d(
                inputs,
                n_channels=n_channels,
                kernel_size=kernel_size,
                strides=strides,
                padding=mode,
                data_format=data_format,
                use_bias=not use_batch_norm,
                trainable=is_training,
                kernel_initializer=conv2d_hparams.kernel_initializer,
                bias_initializer=conv2d_hparams.bias_initializer)
        else:
            group_filter = tf.get_variable(
                name=name + 'group_filter',
                shape=[3, 3, n_channels // cardinality, n_channels],
                trainable=is_training,
                dtype=tf.float32)
            net = tf.nn.conv2d(inputs,
                               group_filter,
                               strides=strides,
                               padding='SAME',
                               data_format=data_format)
        if use_batch_norm:
            net = layers.batch_norm(
                net,
                decay=batch_norm_hparams.decay,
                epsilon=batch_norm_hparams.epsilon,
                scale=batch_norm_hparams.scale,
                center=batch_norm_hparams.center,
                is_training=is_training,
                data_format=data_format,
                param_initializers=batch_norm_hparams.param_initializers)

        if activation == 'relu':
            net = layers.relu(net, name='relu')

        elif activation == 'tanh':
            net = layers.tanh(net, name='tanh')

        elif activation != 'linear' and activation is not None:
            raise KeyError('Invalid activation type: `%s`' % activation)

        return net