running_acc = 0. for (img, label) in trainloader: img = torch.autograd.Variable(img).cuda() label = torch.autograd.Variable(label).cuda() save_param, st = quantize_weight(mnist_mlp, w_bits, cells) noise(mnist_mlp, st) optimizer.zero_grad() output = mnist_mlp(img) loss = criterian(output, label) loss.backward() optimizer.step() store_param(mnist_mlp, save_param) #testing save_param, st = quantize_weight(mnist_mlp, w_bits, cells) for (img, label) in testloader: noise(mnist_mlp, st) img = torch.autograd.Variable(img).cuda() label = torch.autograd.Variable(label).cuda() output = mnist_mlp(img) _, predict = torch.max(output, 1) correct_num = (predict == label).sum() running_acc += correct_num.data[0] store_param(mnist_mlp, save_param) running_acc /= len(testset) print(running_acc) if running_acc > best_acc: best_acc = running_acc if save_param: print('saving') torch.save(mnist_mlp.state_dict(), 'mlp_mnist.t7')
def main(): # get unity environment env, brain = get_unity_envs() # get arguments args = get_arguments() print(args) # set gpu environment os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu cudnn.enabled = True cudnn.benchmark = True cuda = torch.cuda.is_available() # set random seed rn = set_seeds(args.random_seed, cuda) # make directory os.makedirs(args.snapshot_dir, exist_ok=True) # get validation dataset val_set = get_validation_dataset(args) print("len of test set: ", len(val_set)) val_loader = data.DataLoader(val_set, batch_size=args.real_batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True) # generate training list with open(args.syn_list_path, "w") as fp: for i in range(args.syn_img_num): if i % 10 != 0: fp.write(str(i + 1) + '\n') # get main model main_model = MLP(args.num_inputs, args.num_outputs, args.hidden_size) if args.resume != "": main_model.load_state_dict(torch.load(args.resume)) # get task model if args.task_model_name == "FCN8s": task_model = FCN8s_sourceonly(n_class=args.num_classes) vgg16 = VGG16(pretrained=True) task_model.copy_params_from_vgg16(vgg16) else: raise ValueError("Specified model name: FCN8s") # save initial task model torch.save(task_model.state_dict(), os.path.join(args.snapshot_dir, "task_model_init.pth")) if cuda: main_model = main_model.cuda() task_model = task_model.cuda() # get optimizer main_optimizer = optim.Adam(main_model.parameters(), lr=args.main_lr) task_optimizer = optim.SGD(task_model.parameters(), lr=args.task_lr, momentum=0.9, weight_decay=1e-4) frame_idx = 0 whole_start_time = time.time() while frame_idx < args.max_frames: log_probs = [] rewards = [] start_time = time.time() for i_step in range(1, args.step_each_frame + 1): # get initial attribute list state = np.random.rand(1, args.num_inputs) state = torch.from_numpy(state).float() if cuda: state = state.cuda() # get modified attribute list dist = main_model(state) action = dist.sample() action_actual = action.float() / 10.0 # [0, 0.9] # generate images by attribute list print("action: " + str(action_actual.cpu().numpy())) get_images_by_attributes(args, i_step, env, brain, action_actual[0].cpu().numpy()) train_set = get_training_dataset(args, i_step) train_loader = data.DataLoader(train_set, batch_size=args.syn_batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True) # train the task model using synthetic dataset task_model.load_state_dict( torch.load( os.path.join(args.snapshot_dir, "task_model_init.pth"))) reward = train_task_model(train_loader, val_loader, task_model, task_optimizer, args, cuda) log_prob = dist.log_prob(action)[0] log_probs.append(log_prob) rewards.append(torch.FloatTensor([reward])) frame_idx += 1 if frame_idx == 1: moving_start = torch.FloatTensor([reward]) baseline = compute_returns(rewards, moving_start) moving_start = baseline[-1] log_probs = torch.cat(log_probs) baseline = torch.cat(baseline).detach() rewards = torch.cat(rewards).detach() advantage = rewards - baseline if cuda: advantage = advantage.cuda() loss = -(log_probs * advantage.detach()).mean() with open(os.path.join(args.snapshot_dir, "logs.txt"), 'a') as fp: fp.write( "frame idx: {0:4d}, state: {1:s}, action: {2:s}, reward: {3:s}, baseline: {4:s}, loss: {5:.2f} \n" .format(frame_idx, str(state.cpu()[0].numpy()), str(action.cpu()[0].numpy()), str(rewards.numpy()), str(baseline.numpy()), loss.item())) print("optimize the main model parameters") main_optimizer.zero_grad() loss.backward() main_optimizer.step() elapsed_time = time.time() - start_time print("[frame: {0:3d}], [loss: {1:.2f}], [time: {2:.1f}]".format( frame_idx, loss.item(), elapsed_time)) torch.save( main_model.state_dict(), os.path.join(args.snapshot_dir, "main_model_%d.pth" % frame_idx)) elapsed_time = time.time() - whole_start_time print("whole time: {0:.1f}".format(elapsed_time)) env.close()
def main(args): input_size = 5 output_size = 3 epochs = 100 # Make the training and testing set to be less bias hlb_dataset = HLBDataset(args.dataset_path[0]) hlb_train, hlb_test = random_split( hlb_dataset, (round(0.8 * len(hlb_dataset)), round(0.2 * len(hlb_dataset)))) print(args.weights_path[0]) print(f'Number of training examples: {len(hlb_train)}') print(f'Number of testing examples: {len(hlb_test)}') trainloader = DataLoader(hlb_train, batch_size=2048, shuffle=True, num_workers=2) testloader = DataLoader(hlb_test, batch_size=1024, shuffle=False, num_workers=2) save_weights_pth = args.weights_path[0] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = MLP(input_size=input_size, output_size=output_size) print(model) model.to(device) weights = torch.tensor([0.85, 0.25, 1.0]) criterion = nn.CrossEntropyLoss(weight=weights).cuda() learning_rate = 1e-6 optimizer = optim.Adam(model.parameters(), lr=learning_rate) train_acc_array = [] train_loss_array = [] test_acc_array = [] test_loss_array = [] for i in range(epochs): # loop over the dataset multiple times train_loss, train_acc = do_train(model, device, trainloader, criterion, optimizer) print('Epoch {} Train loss: {} Train acc: {}'.format( i, train_loss, train_acc)) train_acc_array.append(train_acc) train_loss_array.append(train_loss) test_loss, test_acc = do_test(model, device, testloader, criterion) test_acc_array.append(test_acc) test_loss_array.append(test_loss) print('Test loss: {} Test acc: {}'.format(test_loss, test_acc)) if i % 50 == 0: learning_rate = learning_rate * 0.99 for param_group in optimizer.param_groups: param_group['lr'] = learning_rate torch.save(model.state_dict(), args.weights_path[0]) save_data(train_loss_array, train_acc_array, test_loss_array, test_acc_array) plot_graph(train_loss_array, train_acc_array, test_loss_array, test_acc_array)