def main(): # Seed all sources of randomness to 0 for reproducibility np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) random.seed(0) opt = Opts().parse() # Create data loaders train_loader, test_loader = create_data_loaders(opt) # Create nn model, criterion_hm, criterion_paf, latest_inx = create_model(opt) model = model.cuda() criterion_hm = criterion_hm.cuda() criterion_paf = criterion_paf.cuda() # Create optimizer optimizer = create_optimizer(opt, model) # Other params n_epochs = opt.nEpoch to_train = opt.train drop_lr = opt.dropLR val_interval = opt.valInterval learn_rate = opt.LR visualize_out = opt.vizOut # train/ test train_net(train_loader, test_loader, model, criterion_hm, criterion_paf, optimizer, n_epochs, val_interval, learn_rate, drop_lr, opt.saveDir, visualize_out, latest_inx)
def main(): # Seed all sources of randomness to 0 for reproducibility np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) random.seed(0) opt = Opts().parse() # Create data loaders train_loader, test_loader = create_data_loaders(opt) # Create nn model, criterion_hm, criterion_paf, latest_inx = create_model(opt) # model = model.cuda() # criterion_hm = criterion_hm.cuda() # criterion_paf = criterion_paf.cuda() # Create optimizer optimizer = create_optimizer(opt, model) # Other params n_epochs = opt.nEpoch to_train = opt.train drop_lr = opt.dropLR val_interval = opt.valInterval learn_rate = opt.LR visualize_out = opt.vizOut # train/ test img, heat_map, paf, ignore_mask, keypoints = test_loader.dataset.get_item_raw(0, False)
def main(): # Seed all sources of randomness to 0 for reproducibility np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) random.seed(0) opt = Opts().parse() os.environ["CUDA_VISIBLE_DEVICES"] = opt["env"]["device"] print("Using GPU: {}".format(opt["env"]["device"])) # Create data loaders # Create data loaders train_loader, test_loader, _ = create_data_loaders(opt) # Create nn model, criterion_hm, criterion_paf = create_model(opt) model = torch.nn.DataParallel(model, device_ids=[int(index) for index in opt["env"]["device"].split(",")]).cuda() \ if "," in opt["env"]["device"] else model.cuda() if opt["env"]["loadModel"] is not None and opt["typ"] == 'cpr': model.load_state_dict(torch.load(opt["env"]["loadModel"])) print('Loaded model from ' + opt["env"]["loadModel"]) criterion_hm = criterion_hm.cuda() criterion_paf = criterion_paf.cuda() # Create optimizer optimizer = create_optimizer(opt, model) # Other params to_train = opt["to_train"] visualize_out = opt["viz"]["vizOut"] # train/ test Processer = process(model) if to_train: Processer.train_net(train_loader, test_loader, criterion_hm, criterion_paf, optimizer, opt, viz_output=visualize_out) else: Processer.validate_net(test_loader, criterion_hm, criterion_paf, save_dir=opt["env"]["saveDir"], viz_output=visualize_out)
def main(): # Seed all sources of randomness to 0 for reproducibility torch.manual_seed(0) torch.cuda.manual_seed(0) if torch.cuda.is_available() else torch.manual_seed(0) random.seed(0) # Set cudnn.benchmark True to spped up training if torch.cuda.is_available(): torch.backends.cudnn.enabled =True torch.backends.cudnn.benchmark = True opt = Opts().opt # Create data loaders train_loader, test_loader = create_data_loaders(opt) # Create nn model = create_model(opt).to(device()) # Create loss criterion if opt.onlyAutoEncoder: criterion = create_criterion(opt.criterionAutoEncoder).to(device()) else: criterion = create_criterion(opt.criterionClassifier).to(device()) # Choose to train or to test the model if opt.toTrain: # Create optimizer optimizer = create_optimizer(opt, model) train_net(opt, train_loader, test_loader, model, criterion, optimizer, opt.nEpoch, opt.valInterval, opt.LR, opt.dropLR) # Test classifier or AutoEncoder if not opt.onlyAutoEncoder: # Testing classifier predictList = [] labelsList = [] model.eval() with torch.no_grad(): for data in test_loader: images, labels = data images = images.to(device()) labels = labels.to(device()) outputs = model(images) _, predicted = torch.max(outputs, 1) predictList.extend(predicted.cpu().numpy().tolist()) labelsList.extend(labels.cpu().numpy().tolist()) # ===================confusionMatrixGeneration==================== confusionMatrix=confusion_matrix(labelsList, predictList) print('ConfusionMatrix:\n{}\n{}'.format(list(CLASSES.values()),confusionMatrix)) np.save(os.path.join(opt.saveDir,'confusionMatrix.npy'),confusionMatrix) # ===================classificaitonReport: Precision, Recall and f1 score==================== classReport = classification_report(labelsList, predictList, digits=2) df = pandas.DataFrame(classification_report(labelsList, predictList, digits=2, output_dict=True)).transpose() df.to_csv(os.path.join(opt.saveDir, 'my_csv_file.csv')) print(classReport) # ===================heatmapGeneration==================== if opt.toGenerateHeatmap: model.to(torch.device('cpu')) #Currently 33 testing images in the folder test_images are chosen for heaimap generation target_example = 33 for t in range(target_example): # Get params for heatmap generation (original_image, prep_img, target_class, file_name_to_export) = get_example_params(t) # Grad cam, choose which block and which layer in the block for heatmap generation grad_cam = GradCam(model, target_block=2, target_layer=9) # Generate cam mask cam = grad_cam.generate_cam(prep_img) # Save mask save_class_activation_images(opt, original_image, cam, file_name_to_export) print('Grad cam completed') else: # Test AutoEncoder to plot original input images and reconstructed images model.eval() dataiter = iter(test_loader) # Generate images in the first 8 iteration for i in range(8): images, labels = dataiter.next() print('GroundTruth: ', ' '.join('%5s' % CLASSES[labels[j].item()] for j in range(opt.batchSize))) # ===================showGroundTruthImages==================== imshow(torchvision.utils.make_grid(images)) images_ = images.to(device()) # ===================forward===================== decoded_imgs = model(images_) # ===================showReconstructedImages==================== imshow(torchvision.utils.make_grid(decoded_imgs.data))
def main(): # Seed all sources of randomness to 0 for reproducibility torch.manual_seed(0) torch.cuda.manual_seed( 0) if torch.cuda.is_available() else torch.manual_seed(0) random.seed(0) # Set cudnn.benchmark True to spped up training if torch.cuda.is_available(): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True opt = Opts().opt # Create train and val data loaders train_loader, val_loader = create_data_loaders( opt, 'train'), create_data_loaders(opt, 'val') # Create nn model = create_model(opt) if opt.toCuda: model = model.to(device()) # Choose to train or to test the model if opt.toTrain: # Create optimizer optimizer = create_optimizer(opt, model) train_net(opt, train_loader, val_loader, model, optimizer, opt.nEpoch, opt.valInterval, opt.LR, opt.dropLR) else: # Change ASPP image pooling output_stride = 32 train_crop_h, train_crop_w = (1025, 2049) scale = 1. / output_stride pool_h = int((float(train_crop_h) - 1.0) * scale + 1.0) pool_w = int((float(train_crop_w) - 1.0) * scale + 1.0) model.set_image_pooling((pool_h, pool_w)) # Create test data loaders, change batch size to 1 opt.batchSize = 1 test_loader = create_data_loaders(opt, 'test') # test_loader = create_data_loaders(opt, 'test') panoptic_metric = CityscapesPanopticEvaluator( output_dir=os.path.join(opt.saveDir, 'panoptic'), train_id_to_eval_id=test_loader.dataset.train_id_to_eval_id(), label_divisor=test_loader.dataset.label_divisor, void_label=test_loader.dataset.label_divisor * test_loader.dataset.ignore_label, gt_dir=opt.data, split=test_loader.dataset.split, num_classes=test_loader.dataset.num_classes) image_filename_list = [ os.path.splitext(os.path.basename(ann))[0] for ann in test_loader.dataset.img_list ] debug_out_dir = os.path.join(opt.saveDir, 'debug_test') PathManager.mkdirs(debug_out_dir) model.eval() with torch.no_grad(): for i, data in enumerate(test_loader): if opt.toCuda: data = to_cuda(data, device()) image = data.pop('image') out_dict = model(image) # post-processing semantic_pred = get_semantic_segmentation(out_dict['semantic']) if 'foreground' in out_dict: foreground_pred = get_semantic_segmentation( out_dict['foreground']) else: foreground_pred = None panoptic_pred, center_pred = get_panoptic_segmentation( semantic_pred, out_dict['center'], out_dict['offset'], thing_list=test_loader.dataset.thing_list, label_divisor=test_loader.dataset.label_divisor, stuff_area=2048, void_label=(test_loader.dataset.label_divisor * test_loader.dataset.ignore_label), threshold=0.1, nms_kernel=7, top_k=200, foreground_mask=foreground_pred) # save predictions semantic_pred = semantic_pred.squeeze(0).cpu().numpy() panoptic_pred = panoptic_pred.squeeze(0).cpu().numpy() # Crop padded regions. image_size = data['size'].squeeze(0).cpu().numpy() panoptic_pred = panoptic_pred[:image_size[0], :image_size[1]] # Resize back to the raw image size. raw_image_size = data['raw_size'].squeeze(0).cpu().numpy() if raw_image_size[0] != image_size[0] or raw_image_size[ 1] != image_size[1]: semantic_pred = cv2.resize( semantic_pred.astype(np.float), (raw_image_size[1], raw_image_size[0]), interpolation=cv2.INTER_NEAREST).astype(np.int32) panoptic_pred = cv2.resize( panoptic_pred.astype(np.float), (raw_image_size[1], raw_image_size[0]), interpolation=cv2.INTER_NEAREST).astype(np.int32) # Optional: evaluates panoptic segmentation. image_id = '_'.join(image_filename_list[i].split('_')[:3]) panoptic_metric.update(panoptic_pred, image_filename=image_filename_list[i], image_id=image_id) # Processed outputs # save_annotation(semantic_pred, debug_out_dir, 'semantic_pred_%d' % i, # add_colormap=True, colormap=test_loader.dataset.create_label_colormap()) # pan_to_sem = panoptic_pred // test_loader.dataset.label_divisor # save_annotation(pan_to_sem, debug_out_dir, 'pan_to_sem_pred_%d' % i, # add_colormap=True, colormap=test_loader.dataset.create_label_colormap()) # ins_id = panoptic_pred % test_loader.dataset.label_divisor # pan_to_ins = panoptic_pred.copy() # pan_to_ins[ins_id == 0] = 0 # save_instance_annotation(pan_to_ins, debug_out_dir, 'pan_to_ins_pred_%d' % i) save_panoptic_annotation( panoptic_pred, debug_out_dir, 'panoptic_pred_%d' % i, label_divisor=test_loader.dataset.label_divisor, colormap=test_loader.dataset.create_label_colormap()) print('1111111111111111111111') results = panoptic_metric.evaluate() print(results)