def main(params: dict, output_dir: str): import mlflow print("start params={}".format(params)) model_id = "train_0" logger = get_logger() # df = pd.read_pickle("../input/riiid-test-answer-prediction/train_merged.pickle") df = pd.read_pickle( "../input/riiid-test-answer-prediction/split10/train_0.pickle" ).sort_values(["user_id", "timestamp"]).reset_index(drop=True) if is_debug: df = df.head(30000) df["prior_question_had_explanation"] = df[ "prior_question_had_explanation"].fillna(-1) column_config = { ("content_id", "content_type_id"): { "type": "category" }, "user_answer": { "type": "leakage_feature" }, "answered_correctly": { "type": "leakage_feature" }, "part": { "type": "category" }, "prior_question_elapsed_time_bin300": { "type": "category" }, "duration_previous_content_bin300": { "type": "category" }, "prior_question_had_explanation": { "type": "category" }, "rating_diff_content_user_id": { "type": "numeric" }, "task_container_id_bin300": { "type": "category" }, "previous_answer_index_content_id": { "type": "category" }, "previous_answer_content_id": { "type": "category" } } if not load_pickle or is_debug: feature_factory_dict = {"user_id": {}} feature_factory_dict["user_id"][ "DurationPreviousContent"] = DurationPreviousContent() feature_factory_dict["user_id"][ "ElapsedTimeBinningEncoder"] = ElapsedTimeBinningEncoder() feature_factory_dict["user_id"][ "UserContentRateEncoder"] = UserContentRateEncoder( rate_func="elo", column="user_id") feature_factory_dict["user_id"]["PreviousAnswer2"] = PreviousAnswer2( groupby="user_id", column="content_id", is_debug=is_debug, model_id=model_id, n=300) feature_factory_manager = FeatureFactoryManager( feature_factory_dict=feature_factory_dict, logger=logger, split_num=1, model_id="train_0", load_feature=not is_debug, save_feature=not is_debug) print("all_predict") df = feature_factory_manager.all_predict(df) df["task_container_id_bin300"] = [ x if x < 300 else 300 for x in df["task_container_id"] ] df = df[[ "user_id", "content_id", "content_type_id", "part", "user_answer", "answered_correctly", "prior_question_elapsed_time_bin300", "duration_previous_content_bin300", "prior_question_had_explanation", "rating_diff_content_user_id", "task_container_id_bin300", "previous_answer_index_content_id", "previous_answer_content_id" ]] print(df.head(10)) print("data preprocess") train_idx = [] val_idx = [] np.random.seed(0) for _, w_df in df[df["content_type_id"] == 0].groupby("user_id"): if np.random.random() < 0.01: # all val val_idx.extend(w_df.index.tolist()) else: train_num = int(len(w_df) * 0.95) train_idx.extend(w_df[:train_num].index.tolist()) val_idx.extend(w_df[train_num:].index.tolist()) ff_for_transformer = FeatureFactoryForTransformer( column_config=column_config, dict_path="../feature_engineering/", sequence_length=params["max_seq"], logger=logger) ff_for_transformer.make_dict(df=df) n_skill = len(ff_for_transformer.embbed_dict[("content_id", "content_type_id")]) if not load_pickle or is_debug: df["is_val"] = 0 df["is_val"].loc[val_idx] = 1 w_df = df[df["is_val"] == 0] w_df["group"] = ( w_df.groupby("user_id")["user_id"].transform("count") - w_df.groupby("user_id").cumcount()) // params["max_seq"] w_df["user_id"] = w_df["user_id"].astype( str) + "_" + w_df["group"].astype(str) group = ff_for_transformer.all_predict(w_df) dataset_train = SAKTDataset(group, n_skill=n_skill, max_seq=params["max_seq"]) del w_df gc.collect() ff_for_transformer = FeatureFactoryForTransformer( column_config=column_config, dict_path="../feature_engineering/", sequence_length=params["max_seq"], logger=logger) if not load_pickle or is_debug: group = ff_for_transformer.all_predict(df[df["content_type_id"] == 0]) dataset_val = SAKTDataset(group, is_test=True, n_skill=n_skill, max_seq=params["max_seq"]) os.makedirs("../input/feature_engineering/model155", exist_ok=True) if not is_debug and not load_pickle: with open(f"../input/feature_engineering/model155/train.pickle", "wb") as f: pickle.dump(dataset_train, f) with open(f"../input/feature_engineering/model155/val.pickle", "wb") as f: pickle.dump(dataset_val, f) if not is_debug and load_pickle: with open(f"../input/feature_engineering/model155/train.pickle", "rb") as f: dataset_train = pickle.load(f) with open(f"../input/feature_engineering/model155/val.pickle", "rb") as f: dataset_val = pickle.load(f) print("loaded!") dataloader_train = DataLoader(dataset_train, batch_size=params["batch_size"], shuffle=True, num_workers=1) dataloader_val = DataLoader(dataset_val, batch_size=params["batch_size"], shuffle=False, num_workers=1) model = SAKTModel(n_skill, embed_dim=params["embed_dim"], max_seq=params["max_seq"], dropout=dropout, cont_emb=params["cont_emb"]) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdaBelief( optimizer_grouped_parameters, lr=params["lr"], ) num_train_optimization_steps = int(len(dataloader_train) * 20) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=params["num_warmup_steps"], num_training_steps=num_train_optimization_steps) criterion = nn.BCEWithLogitsLoss() model.to(device) criterion.to(device) for epoch in range(epochs): loss, acc, auc, auc_val = train_epoch(model, dataloader_train, dataloader_val, optimizer, criterion, scheduler, epoch, device) print("epoch - {} train_loss - {:.3f} auc - {:.4f} auc-val: {:.4f}". format(epoch, loss, auc, auc_val)) preds = [] labels = [] with torch.no_grad(): for item in tqdm(dataloader_val): x = item["x"].to(device).long() target_id = item["target_id"].to(device).long() part = item["part"].to(device).long() label = item["label"].to(device).float() elapsed_time = item["elapsed_time"].to(device).long() duration_previous_content = item["duration_previous_content"].to( device).long() prior_question_had_explanation = item["prior_q"].to(device).long() user_answer = item["user_answer"].to(device).long() rate_diff = item["rate_diff"].to(device).float() container_id = item["container_id"].to(device).long() prev_ans_idx = item["previous_answer_index_content_id"].to( device).long() prev_answer_content_id = item["previous_answer_content_id"].to( device).long() output = model(x, target_id, part, elapsed_time, duration_previous_content, prior_question_had_explanation, user_answer, rate_diff, container_id, prev_ans_idx, prev_answer_content_id) preds.extend(torch.nn.Sigmoid()( output[:, -1]).view(-1).data.cpu().numpy().tolist()) labels.extend( label[:, -1].round().view(-1).data.cpu().numpy().tolist()) auc_transformer = roc_auc_score(labels, preds) print("single transformer: {:.4f}".format(auc_transformer)) df_oof = pd.DataFrame() # df_oof["row_id"] = df.loc[val_idx].index print(len(dataloader_val)) print(len(preds)) df_oof["predict"] = preds df_oof["target"] = labels df_oof.to_csv(f"{output_dir}/transformers1.csv", index=False) """ df_oof2 = pd.read_csv("../output/ex_237/20201213110353/oof_train_0_lgbm.csv") df_oof2.columns = ["row_id", "predict_lgbm", "target"] df_oof2 = pd.merge(df_oof, df_oof2, how="inner") auc_lgbm = roc_auc_score(df_oof2["target"].values, df_oof2["predict_lgbm"].values) print("lgbm: {:.4f}".format(auc_lgbm)) print("ensemble") max_auc = 0 max_nn_ratio = 0 for r in np.arange(0, 1.05, 0.05): auc = roc_auc_score(df_oof2["target"].values, df_oof2["predict_lgbm"].values*(1-r) + df_oof2["predict"].values*r) print("[nn_ratio: {:.2f}] AUC: {:.4f}".format(r, auc)) if max_auc < auc: max_auc = auc max_nn_ratio = r print(len(df_oof2)) """ if not is_debug: mlflow.start_run(experiment_id=10, run_name=os.path.basename(__file__)) for key, value in params.items(): mlflow.log_param(key, value) mlflow.log_metric("auc_val", auc_transformer) mlflow.end_run() torch.save(model.state_dict(), f"{output_dir}/transformers.pth") del model torch.cuda.empty_cache() with open(f"{output_dir}/transformer_param.json", "w") as f: json.dump(params, f) if is_make_feature_factory: # feature factory feature_factory_dict = {"user_id": {}} feature_factory_dict["user_id"][ "DurationPreviousContent"] = DurationPreviousContent( is_partial_fit=True) feature_factory_dict["user_id"][ "ElapsedTimeBinningEncoder"] = ElapsedTimeBinningEncoder() feature_factory_manager = FeatureFactoryManager( feature_factory_dict=feature_factory_dict, logger=logger, split_num=1, model_id="all", load_feature=not is_debug, save_feature=not is_debug) ff_for_transformer = FeatureFactoryForTransformer( column_config=column_config, dict_path="../feature_engineering/", sequence_length=params["max_seq"], logger=logger) df = pd.read_pickle( "../input/riiid-test-answer-prediction/train_merged.pickle") if is_debug: df = df.head(10000) df = df.sort_values(["user_id", "timestamp"]).reset_index(drop=True) feature_factory_manager.fit(df) df = feature_factory_manager.all_predict(df) for dicts in feature_factory_manager.feature_factory_dict.values(): for factory in dicts.values(): factory.logger = None feature_factory_manager.logger = None with open(f"{output_dir}/feature_factory_manager.pickle", "wb") as f: pickle.dump(feature_factory_manager, f) ff_for_transformer.fit(df) ff_for_transformer.logger = None with open( f"{output_dir}/feature_factory_manager_for_transformer.pickle", "wb") as f: pickle.dump(ff_for_transformer, f)
def main(params: dict, output_dir: str): import mlflow print("start params={}".format(params)) df = pd.read_feather( "../../riiid_takoi/notebook/data/train_sort.feather").head(len_train) # df = pd.read_pickle("../input/riiid-test-answer-prediction/split10/train_0.pickle").sort_values(["user_id", "timestamp"]).reset_index(drop=True) if is_debug: df = df.head(30000) for d in load_feature_dir: df_ = pd.read_feather(d).head(len_train) if is_debug: df_ = df_.head(30000) df = pd.concat([df, df_], axis=1) # ==================== # preprocess # ==================== df["content_id"] = df["content_id"] + 2 df["prior_question_had_explanation"] = df[ "prior_question_had_explanation"].fillna(-1) + 2 df["content_id_with_lecture"] = df["content_id"] df.loc[df["content_type_id"] == 1, "content_id_with_lecture"] = df["content_id"] + 14000 df["answered_correctly"] += 3 df["task_container_id"] += 1 df["part"] += 1 df["prior_question_elapsed_time"] = df[ "prior_question_elapsed_time"].fillna(0) df["timestamp_delta"] = df["timestamp_delta"].fillna(0) df["uid_win_rate"] = df["uid_win_rate"].fillna( 0.65) # target_encoding(user_id) # 以下は特徴作成時に処理済 # df["content_id_delta"] = df["content_id_delta"].fillna(-1) + 2 # df["last_content_id_acc"] = df["last_content_id_acc"].fillna(-1) + 2 # ==================== # data prepare # ==================== agg_dict = { "content_id_with_lecture": list, "prior_question_had_explanation": list, "prior_question_elapsed_time": list, "answered_correctly": list, "task_container_id": list, "part": list, "content_id_delta": list, "last_content_id_acc": list, "uid_win_rate": list, "is_val": list, "timestamp_delta": list, } df_val_row = pd.read_feather( "../../riiid_takoi/notebook/fe/validation_row_id.feather").head( len_train // 10) if is_debug: df_val_row = df_val_row.head(3000) df_val_row["is_val"] = 1 df = pd.merge(df, df_val_row, how="left", on="row_id") df["is_val"] = df["is_val"].fillna(0) print(df["is_val"].value_counts()) if not load_pickle or is_debug: # 100件ずつgroupを作る. 例えば950件あったら、 1~50, 51~150, 151~250 のように、先頭が端数になるように w_df = df[df["is_val"] == 0] w_df["group"] = ( w_df.groupby("user_id")["user_id"].transform("count") - w_df.groupby("user_id").cumcount()) // params["max_seq"] group = w_df.groupby(["user_id", "group"]).agg(agg_dict).T.to_dict() dataset_train = SAKTDataset(group, n_skill=60000, max_seq=params["max_seq"]) del w_df gc.collect() group = df[df["content_type_id"] == 0].groupby("user_id").agg( agg_dict).T.to_dict() dataset_val = SAKTDataset(group, is_test=True, n_skill=60000, max_seq=params["max_seq"]) os.makedirs("../input/feature_engineering/model200", exist_ok=True) if not is_debug and not load_pickle: with open(f"../input/feature_engineering/model200/train.pickle", "wb") as f: pickle.dump(dataset_train, f) with open(f"../input/feature_engineering/model200/val.pickle", "wb") as f: pickle.dump(dataset_val, f) if not is_debug and load_pickle: with open(f"../input/feature_engineering/model200/train.pickle", "rb") as f: dataset_train = pickle.load(f) with open(f"../input/feature_engineering/model200/val.pickle", "rb") as f: dataset_val = pickle.load(f) print("loaded!") dataloader_train = DataLoader(dataset_train, batch_size=params["batch_size"], shuffle=True, num_workers=1) dataloader_val = DataLoader(dataset_val, batch_size=params["batch_size"], shuffle=False, num_workers=1) model = SAKTModel(n_skill=60000, embed_dim=params["embed_dim"], max_seq=params["max_seq"], dropout=dropout, cont_emb=params["cont_emb"]) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdaBelief( optimizer_grouped_parameters, lr=params["lr"], ) num_train_optimization_steps = int(len(dataloader_train) * 20) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=params["num_warmup_steps"], num_training_steps=num_train_optimization_steps) criterion = nn.BCEWithLogitsLoss() model.to(device) criterion.to(device) for epoch in range(epochs): loss, acc, auc, auc_val = train_epoch(model, dataloader_train, dataloader_val, optimizer, criterion, scheduler, epoch, device) print("epoch - {} train_loss - {:.3f} auc - {:.4f} auc-val: {:.4f}". format(epoch, loss, auc, auc_val)) preds = [] labels = [] with torch.no_grad(): for item in tqdm(dataloader_val): label = item["label"].to(device).float() output = model(item, device) preds.extend(torch.nn.Sigmoid()( output[:, -1]).view(-1).data.cpu().numpy().tolist()) labels.extend(label[:, -1].view(-1).data.cpu().numpy().tolist()) auc_transformer = roc_auc_score(labels, preds) print("single transformer: {:.4f}".format(auc_transformer)) df_oof = pd.DataFrame() # df_oof["row_id"] = df.loc[val_idx].index print(len(dataloader_val)) print(len(preds)) df_oof["predict"] = preds df_oof["target"] = labels df_oof.to_csv(f"{output_dir}/transformers1.csv", index=False) """ df_oof2 = pd.read_csv("../output/ex_237/20201213110353/oof_train_0_lgbm.csv") df_oof2.columns = ["row_id", "predict_lgbm", "target"] df_oof2 = pd.merge(df_oof, df_oof2, how="inner") auc_lgbm = roc_auc_score(df_oof2["target"].values, df_oof2["predict_lgbm"].values) print("lgbm: {:.4f}".format(auc_lgbm)) print("ensemble") max_auc = 0 max_nn_ratio = 0 for r in np.arange(0, 1.05, 0.05): auc = roc_auc_score(df_oof2["target"].values, df_oof2["predict_lgbm"].values*(1-r) + df_oof2["predict"].values*r) print("[nn_ratio: {:.2f}] AUC: {:.4f}".format(r, auc)) if max_auc < auc: max_auc = auc max_nn_ratio = r print(len(df_oof2)) """ if not is_debug: mlflow.start_run(experiment_id=10, run_name=os.path.basename(__file__)) for key, value in params.items(): mlflow.log_param(key, value) mlflow.log_metric("auc_val", auc_transformer) mlflow.end_run() torch.save(model.state_dict(), f"{output_dir}/transformers.pth") del model torch.cuda.empty_cache() with open(f"{output_dir}/transformer_param.json", "w") as f: json.dump(params, f)