def test_train_gdl(self):
        dataset = SegmentationDummyDataset(batch_size=32)
        pspnet = PSPNet(epochs=1,
                        dataset=dataset,
                        frontend_name='resnet101',
                        generarized_dice_loss={'alpha': 0.01})
        history = pspnet.train()

        ok_('loss' in history)
Example #2
0
File: test.py Project: whrws/semseg
def main():
    global args, logger
    args = get_parser()
    check(args)
    logger = get_logger()
    os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.test_gpu)
    logger.info(args)
    logger.info("=> creating model ...")
    logger.info("Classes: {}".format(args.classes))

    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]

    gray_folder = os.path.join(args.save_folder, 'gray')
    color_folder = os.path.join(args.save_folder, 'color')

    test_transform = transform.Compose([transform.ToTensor()])
    test_data = dataset.SemData(split=args.split, data_root=args.data_root, data_list=args.test_list, transform=test_transform)
    index_start = args.index_start
    if args.index_step == 0:
        index_end = len(test_data.data_list)
    else:
        index_end = min(index_start + args.index_step, len(test_data.data_list))
    test_data.data_list = test_data.data_list[index_start:index_end]
    test_loader = torch.utils.data.DataLoader(test_data, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True)
    colors = np.loadtxt(args.colors_path).astype('uint8')
    names = [line.rstrip('\n') for line in open(args.names_path)]

    if not args.has_prediction:
        if args.arch == 'psp':
            from model.pspnet import PSPNet
            model = PSPNet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, pretrained=False)
        elif args.arch == 'psa':
            from model.psanet import PSANet
            model = PSANet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, compact=args.compact,
                           shrink_factor=args.shrink_factor, mask_h=args.mask_h, mask_w=args.mask_w,
                           normalization_factor=args.normalization_factor, psa_softmax=args.psa_softmax, pretrained=False)
        logger.info(model)
        model = torch.nn.DataParallel(model).cuda()
        cudnn.benchmark = True
        if os.path.isfile(args.model_path):
            logger.info("=> loading checkpoint '{}'".format(args.model_path))
            checkpoint = torch.load(args.model_path)
            model.load_state_dict(checkpoint['state_dict'], strict=False)
            logger.info("=> loaded checkpoint '{}'".format(args.model_path))
        else:
            raise RuntimeError("=> no checkpoint found at '{}'".format(args.model_path))
        test(test_loader, test_data.data_list, model, args.classes, mean, std, args.base_size, args.test_h, args.test_w, args.scales, gray_folder, color_folder, colors)
    if args.split != 'test':
        cal_acc(test_data.data_list, gray_folder, args.classes, names)
Example #3
0
  def __setupSegmentation(self):
    if torch.cuda.device_count() == 0:
      device = torch.device("cpu")
    else:
      device = torch.device("cuda")



    model = PSPNet(layers=self.args.layers, classes=self.args.classes, zoom_factor=self.args.zoom_factor, pretrained=False)

    model = torch.nn.DataParallel(model)
    cudnn.benchmark = True

    if os.path.isfile(self.args.model_path):
      checkpoint = torch.load(self.args.model_path, map_location=torch.device('cpu'))
      model.load_state_dict(checkpoint['state_dict'], strict=False)
      return model
    else:
      raise RuntimeError("=> no checkpoint found at '{}'".format(self.args.model_path))
Example #4
0
 def __init__(self, tag='teacher', layers=50, bins=(1, 2, 3, 6), dropout=0.1, classes=19, zoom_factor=8, temperature = 1, alpha = 0., use_ppm=True, criterion=nn.CrossEntropyLoss(ignore_index=255), pretrained=True):
     super(KDNet, self).__init__()
     assert layers in [18, 50]
     assert 2048 % len(bins) == 0
     assert classes > 1
     assert zoom_factor in [1, 2, 4, 8]
     self.zoom_factor = zoom_factor
     self.use_ppm = use_ppm
     self.criterion = criterion
     self.temperature = temperature
     self.alpha = alpha
     self.student_net = PSPNet(tag='student', layers=18, bins=(1, 2, 3, 6), dropout=0.1, classes=19, zoom_factor=8, use_ppm=True, criterion=nn.CrossEntropyLoss(ignore_index=255), pretrained=True)
     self.teacher_loader = teacher_loader()
    def __init__(self, config_file=CONFIG_FILE):
        # Load Parameters
        self.args_ = config.load_cfg_from_cfg_file(config_file)
        self.logger_ = get_logger()
        os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(
            str(x) for x in self.args_.test_gpu)
        value_scale = 255
        mean = [0.485, 0.456, 0.406]
        self.mean_ = [item * value_scale for item in mean]
        std = [0.229, 0.224, 0.225]
        self.std_ = [item * value_scale for item in std]
        # self.colors_ = np.loadtxt(self.args_.colors_path).astype('uint8')

        # Load Model
        if self.args_.arch == 'psp':
            from model.pspnet import PSPNet
            self.model_ = PSPNet(layers=self.args_.layers,
                                 classes=self.args_.classes,
                                 zoom_factor=self.args_.zoom_factor,
                                 pretrained=False)
        elif self.args_.arch == 'psa':
            from model.psanet import PSANet
            self.model_ = PSANet(
                layers=self.args_.layers,
                classes=self.args_.classes,
                zoom_factor=self.args_.zoom_factor,
                compact=self.args_.compact,
                shrink_factor=self.args_.shrink_factor,
                mask_h=self.args_.mask_h,
                mask_w=self.args_.mask_w,
                normalization_factor=self.args_.normalization_factor,
                psa_softmax=self.args_.psa_softmax,
                pretrained=False)
        self.model_ = torch.nn.DataParallel(self.model_).cuda()
        cudnn.benchmark = True

        if os.path.isfile(self.args_.model_path):
            self.logger_ = get_logger().info(
                "=> loading checkpoint '{}'".format(self.args_.model_path))
            checkpoint = torch.load(self.args_.model_path)
            self.model_.load_state_dict(checkpoint['state_dict'], strict=False)
            self.logger_ = get_logger().info(
                "=> loaded checkpoint '{}'".format(self.args_.model_path))
        else:
            raise RuntimeError("=> no checkpoint found at '{}'".format(
                self.args_.model_path))
def main():
    global args, logger
    args = get_parser()
    check(args)
    logger = get_logger()
    os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.test_gpu)
    logger.info(args)
    logger.info("=> creating model ...")
    logger.info("Classes: {}".format(args.classes))

    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]
    colors = np.loadtxt(args.colors_path).astype('uint8')

    if args.arch == 'psp':
        from model.pspnet import PSPNet
        model = PSPNet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, pretrained=False)
    elif args.arch == 'psa':
        from model.psanet import PSANet
        model = PSANet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, compact=args.compact,
                       shrink_factor=args.shrink_factor, mask_h=args.mask_h, mask_w=args.mask_w,
                       normalization_factor=args.normalization_factor, psa_softmax=args.psa_softmax, pretrained=False)
    logger.info(model)
    model = torch.nn.DataParallel(model).cuda()
    cudnn.benchmark = False #True
    if os.path.isfile(args.model_path):
        logger.info("=> loading checkpoint '{}'".format(args.model_path))
        checkpoint = torch.load(args.model_path)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
        logger.info("=> loaded checkpoint '{}'".format(args.model_path))
    else:
        raise RuntimeError("=> no checkpoint found at '{}'".format(args.model_path))
    with open(args.image) as f:
        image_files = f.read().splitlines()
        for file in image_files:
            image = file.split()
            image = os.path.join('/scratch/mw3706/dim/Deep_Image_Matting_Reproduce/pspnet/data/portrait/', image[0])
            test(model.eval(), image, args.classes, mean, std, args.base_size, args.test_h, args.test_w, args.scales, colors)

    if (args.image).split('/')[-1] == 'training.txt'
        train_label_list = os.listdir('/scratch/mw3706/dim/Deep_Image_Matting_Reproduce/pspnet/data/portrait/label/train_label')
        with open('/scratch/mw3706/dim/Deep_Image_Matting_Reproduce/pspnet/data/portrait/label/training.txt', 'w') as f:
            for label in train_label_list:
                f.write('/scratch/mw3706/dim/Deep_Image_Matting_Reproduce/pspnet/data/portrait/label/train_label/'+label+'\n')
    else:
        val_label_list = os.listdir('/scratch/mw3706/dim/Deep_Image_Matting_Reproduce/pspnet/data/portrait/label/val_label/')
        with open('/scratch/mw3706/dim/Deep_Image_Matting_Reproduce/pspnet/data/portrait/label/validation.txt', 'w') as f:
            for label in val_label_list:
                f.write('/scratch/mw3706/dim/Deep_Image_Matting_Reproduce/pspnet/data/portrait/label/val_label/'+label+'\n')
Example #7
0
def main():
    global args, logger
    args = get_parser()
    check(args)
    logger = get_logger()
    os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(
        str(x) for x in args.test_gpu)
    logger.info(args)
    logger.info("=> creating model ...")
    logger.info("Classes: {}".format(args.classes))

    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]
    colors = np.loadtxt(args.colors_path).astype('uint8')

    if args.arch == 'psp':
        from model.pspnet import PSPNet
        model = PSPNet(layers=args.layers,
                       classes=args.classes,
                       zoom_factor=args.zoom_factor,
                       pretrained=False)
    elif args.arch == 'psa':
        from model.psanet import PSANet
        model = PSANet(layers=args.layers,
                       classes=args.classes,
                       zoom_factor=args.zoom_factor,
                       compact=args.compact,
                       shrink_factor=args.shrink_factor,
                       mask_h=args.mask_h,
                       mask_w=args.mask_w,
                       normalization_factor=args.normalization_factor,
                       psa_softmax=args.psa_softmax,
                       pretrained=False)
    logger.info(model)
    model = torch.nn.DataParallel(model).cuda()
    cudnn.benchmark = True
    if os.path.isfile(args.model_path):
        logger.info("=> loading checkpoint '{}'".format(args.model_path))
        checkpoint = torch.load(args.model_path)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
        logger.info("=> loaded checkpoint '{}'".format(args.model_path))
    else:
        raise RuntimeError("=> no checkpoint found at '{}'".format(
            args.model_path))
    paths = glob.glob(args.image + '/scene*/color/*00.jpg')
    for path in paths:
        test(model.eval(), path, args.classes, mean, std, args.base_size,
             args.test_h, args.test_w, args.scales, colors)
Example #8
0
def get_model(args, criterion, BatchNorm):
    """
        Args:
        -   

        Returns:
        -   
    """
    if args.arch == 'psp':
        from model.pspnet import PSPNet
        model = PSPNet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, criterion=criterion, BatchNorm=BatchNorm, network_name=args.network_name)

    elif args.arch == 'hrnet':
        from model.seg_hrnet import get_configured_hrnet
        # note apex batchnorm is hardcoded 
        model = get_configured_hrnet(args.classes)
    elif args.arch == 'hrnet_ocr':
        from model.seg_hrnet_ocr import get_configured_hrnet_ocr
        model = get_configured_hrnet_ocr(args.classes)
    return model
Example #9
0
def main_worker(gpu, ngpus_per_node, argss):
    global args
    args = argss

    ## step.1 设置分布式相关参数
    # 1.1 分布式初始化
    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)  # 分布式初始化

    ## step.2 构建网络
    # ---------------------------------------------- 根据实际情况自己写 ---------------------------------------------#
    criterion = nn.CrossEntropyLoss(
        ignore_index=args.ignore_label)  # 交叉熵损失函数, 根据情况自己修改
    if args.arch == 'psp':
        from model.pspnet import PSPNet
        model = PSPNet(layers=args.layers,
                       classes=args.classes,
                       zoom_factor=args.zoom_factor,
                       criterion=criterion)
        modules_ori = [
            model.layer0, model.layer1, model.layer2, model.layer3,
            model.layer4
        ]
        modules_new = [model.ppm, model.cls, model.aux]
    elif args.arch == 'psa':
        from model.psanet import PSANet
        model = PSANet(layers=args.layers,
                       classes=args.classes,
                       zoom_factor=args.zoom_factor,
                       psa_type=args.psa_type,
                       compact=args.compact,
                       shrink_factor=args.shrink_factor,
                       mask_h=args.mask_h,
                       mask_w=args.mask_w,
                       normalization_factor=args.normalization_factor,
                       psa_softmax=args.psa_softmax,
                       criterion=criterion)
        modules_ori = [
            model.layer0, model.layer1, model.layer2, model.layer3,
            model.layer4
        ]
        modules_new = [model.psa, model.cls, model.aux]
    # ---------------------------------------------------- END ---------------------------------------------------#

    ## step.3 设置优化器
    params_list = []  # 模型参数列表
    for module in modules_ori:
        params_list.append(dict(params=module.parameters(),
                                lr=args.base_lr))  # 原来backbone网络 学习率 0.01
    for module in modules_new:
        params_list.append(
            dict(params=module.parameters(),
                 lr=args.base_lr * 10))  # 新加入预测网络 学习率 0.1
    args.index_split = 5
    optimizer = torch.optim.SGD(params_list,
                                lr=args.base_lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)  # SGD优化器
    # 3.x 设置sync_bn from torch.nn.SyncBatchNorm
    if args.sync_bn:
        model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

    ## step.4 多线程分布式工作
    # 4.1 判断是否是在主进程中, 如果在进行如下程序
    if main_process():
        global logger, writer
        logger = get_logger()  # 设置logger
        writer = SummaryWriter(args.save_path)  # 设置writer
        logger.info(args)  # 输出参数列表
        logger.info("=> creating model ...")
        logger.info("Classes: {}".format(args.classes))
        logger.info(model)  # 输出网络列表
    # 4.2 分布式工作
    if args.distributed:
        torch.cuda.set_device(gpu)  # 指定编号为gpu的那一张显卡
        args.batch_size = int(args.batch_size /
                              ngpus_per_node)  # 每张卡的训练的batch size
        args.batch_size_val = int(args.batch_size_val /
                                  ngpus_per_node)  # 每张卡的评测的batch size
        args.workers = int(
            (args.workers + ngpus_per_node - 1) / ngpus_per_node)  # 每张卡工作的数目
        model = torch.nn.parallel.DistributedDataParallel(
            model.cuda(), device_ids=[gpu])  # 加载torch分布式
    else:
        model = torch.nn.DataParallel(model.cuda())  # 数据并行

    ## step.5 加载网络权重
    # 5.1 直接加载网络预权重
    if args.weight:
        if os.path.isfile(args.weight):
            if main_process():
                logger.info("=> loading weight '{}'".format(args.weight))
            checkpoint = torch.load(args.weight)
            model.load_state_dict(checkpoint['state_dict'])
            if main_process():
                logger.info("=> loaded weight '{}'".format(args.weight))
        else:
            if main_process():
                logger.info("=> no weight found at '{}'".format(args.weight))
    # 5.2 加载上次没训练完的模型权重
    if args.resume:
        if os.path.isfile(args.resume):
            if main_process():
                logger.info("=> loading checkpoint '{}'".format(args.resume))
            # checkpoint = torch.load(args.resume)
            checkpoint = torch.load(
                args.resume, map_location=lambda storage, loc: storage.cuda())
            args.start_epoch = checkpoint['epoch']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            if main_process():
                logger.info("=> loaded checkpoint '{}' (epoch {})".format(
                    args.resume, checkpoint['epoch']))
        else:
            if main_process():
                logger.info("=> no checkpoint found at '{}'".format(
                    args.resume))

    ## step.7 设置数据loader
    # 7.1 loader参数设置
    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]

    train_transform = transform.Compose([
        transform.RandScale([args.scale_min, args.scale_max]),
        transform.RandRotate([args.rotate_min, args.rotate_max],
                             padding=mean,
                             ignore_label=args.ignore_label),
        transform.RandomGaussianBlur(),
        transform.RandomHorizontalFlip(),
        transform.Crop([args.train_h, args.train_w],
                       crop_type='rand',
                       padding=mean,
                       ignore_label=args.ignore_label),
        transform.ToTensor(),
        transform.Normalize(mean=mean, std=std)
    ])  # 组合数据预处理

    # 7.2 训练数据, 可以根据需要自己修改或写
    # ---------------------------------------------- 根据实际情况自己写 ---------------------------------------------#
    train_data = dataset.SemData(split='train',
                                 data_root=args.data_root,
                                 data_list=args.train_list,
                                 transform=train_transform)
    # ---------------------------------------------------- END ---------------------------------------------------#
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_data)  # 分布式下数据loader
    else:
        train_sampler = None
    train_loader = torch.utils.data.DataLoader(train_data,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler,
                                               drop_last=True)
    if args.evaluate:  # evaluate数据
        val_transform = transform.Compose([
            transform.Crop([args.train_h, args.train_w],
                           crop_type='center',
                           padding=mean,
                           ignore_label=args.ignore_label),
            transform.ToTensor(),
            transform.Normalize(mean=mean, std=std)
        ])
        val_data = dataset.SemData(split='val',
                                   data_root=args.data_root,
                                   data_list=args.val_list,
                                   transform=val_transform)
        if args.distributed:
            val_sampler = torch.utils.data.distributed.DistributedSampler(
                val_data)
        else:
            val_sampler = None
        val_loader = torch.utils.data.DataLoader(
            val_data,
            batch_size=args.batch_size_val,
            shuffle=False,
            num_workers=args.workers,
            pin_memory=True,
            sampler=val_sampler)

    ## step.8 主循环
    for epoch in range(args.start_epoch, args.epochs):
        epoch_log = epoch + 1
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # 8.1 训练函数
        # ---------------------------------------------- 根据实际情况自己写 ---------------------------------------------#
        loss_train, mIoU_train, mAcc_train, allAcc_train = train(
            train_loader, model, optimizer, epoch)
        # ---------------------------------------------------- END ---------------------------------------------------#

        if main_process():
            writer.add_scalar('loss_train', loss_train, epoch_log)
            writer.add_scalar('mIoU_train', mIoU_train, epoch_log)
            writer.add_scalar('mAcc_train', mAcc_train, epoch_log)
            writer.add_scalar('allAcc_train', allAcc_train, epoch_log)
        # 8.2 保存checkpoint
        if (epoch_log % args.save_freq == 0) and main_process():
            filename = args.save_path + '/train_epoch_' + str(
                epoch_log) + '.pth'
            logger.info('Saving checkpoint to: ' + filename)
            torch.save(
                {
                    'epoch': epoch_log,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict()
                }, filename)
            if epoch_log / args.save_freq > 2:
                deletename = args.save_path + '/train_epoch_' + str(
                    epoch_log - args.save_freq * 2) + '.pth'
                os.remove(deletename)
        # 训练一个epoch之后evaluate
        if args.evaluate:
            loss_val, mIoU_val, mAcc_val, allAcc_val = validate(
                val_loader, model, criterion)
            if main_process():
                writer.add_scalar('loss_val', loss_val, epoch_log)
                writer.add_scalar('mIoU_val', mIoU_val, epoch_log)
                writer.add_scalar('mAcc_val', mAcc_val, epoch_log)
                writer.add_scalar('allAcc_val', allAcc_val, epoch_log)
Example #10
0
def main(
        config_name,
        weights_url='https://github.com/deepparrot/semseg/releases/download/0.1/pspnet50-ade20k.pth',
        weights_name='pspnet50-ade20k.pth'):

    args = config.load_cfg_from_cfg_file(config_name)
    check(args)

    os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(
        str(x) for x in args.test_gpu)

    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]

    gray_folder = os.path.join(args.save_folder, 'gray')
    color_folder = os.path.join(args.save_folder, 'color')

    args.data_root = './.data/vision/ade20k'
    args.val_list = './.data/vision/ade20k/validation.txt'
    args.test_list = './.data/vision/ade20k/validation.txt'

    print(args.data_root)

    test_transform = transform.Compose([transform.ToTensor()])
    test_data = dataset.SemData(split=args.split,
                                data_root=args.data_root,
                                data_list=args.test_list,
                                transform=test_transform)
    index_start = args.index_start
    if args.index_step == 0:
        index_end = len(test_data.data_list)
    else:
        index_end = min(index_start + args.index_step,
                        len(test_data.data_list))
    test_data.data_list = test_data.data_list[index_start:index_end]
    test_loader = torch.utils.data.DataLoader(test_data,
                                              batch_size=1,
                                              shuffle=False,
                                              num_workers=args.workers,
                                              pin_memory=True)
    colors = np.loadtxt(args.colors_path).astype('uint8')
    names = []

    if not args.has_prediction:
        if args.arch == 'psp':
            from model.pspnet import PSPNet
            model = PSPNet(layers=args.layers,
                           classes=args.classes,
                           zoom_factor=args.zoom_factor,
                           pretrained=False)
        elif args.arch == 'psa':
            from model.psanet import PSANet
            model = PSANet(layers=args.layers,
                           classes=args.classes,
                           zoom_factor=args.zoom_factor,
                           compact=args.compact,
                           shrink_factor=args.shrink_factor,
                           mask_h=args.mask_h,
                           mask_w=args.mask_w,
                           normalization_factor=args.normalization_factor,
                           psa_softmax=args.psa_softmax,
                           pretrained=False)
        model = torch.nn.DataParallel(model).cuda()
        cudnn.benchmark = True

        local_checkpoint, _ = urllib.request.urlretrieve(
            weights_url, weights_name)

        if os.path.isfile(local_checkpoint):
            checkpoint = torch.load(local_checkpoint)
            model.load_state_dict(checkpoint['state_dict'], strict=False)
        else:
            raise RuntimeError(
                "=> no checkpoint found at '{}'".format(local_checkpoint))
        test(test_loader, test_data.data_list, model, args.classes, mean, std,
             args.base_size, args.test_h, args.test_w, args.scales,
             gray_folder, color_folder, colors)
    if args.split != 'test':
        cal_acc(test_data.data_list, gray_folder, args.classes, names)
Example #11
0
def main_worker(gpu, ngpus_per_node, argss):
    global args
    args = argss
    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)

    criterion = nn.CrossEntropyLoss(ignore_index=args.ignore_label)
    if args.arch == 'psp':
        from model.pspnet import PSPNet
        model = PSPNet(layers=args.layers,
                       classes=args.classes,
                       zoom_factor=args.zoom_factor,
                       criterion=criterion,
                       args=args)
        modules_ori = [
            model.layer0, model.layer1, model.layer2, model.layer3,
            model.layer4
        ]
        modules_new = [model.ppm, model.cls, model.aux]
    elif args.arch == 'psa':
        from model.psanet import PSANet
        model = PSANet(layers=args.layers,
                       classes=args.classes,
                       zoom_factor=args.zoom_factor,
                       psa_type=args.psa_type,
                       compact=args.compact,
                       shrink_factor=args.shrink_factor,
                       mask_h=args.mask_h,
                       mask_w=args.mask_w,
                       normalization_factor=args.normalization_factor,
                       psa_softmax=args.psa_softmax,
                       criterion=criterion)
        modules_ori = [
            model.layer0, model.layer1, model.layer2, model.layer3,
            model.layer4
        ]
        modules_new = [model.psa, model.cls, model.aux]
    params_list = []
    for module in modules_ori:
        params_list.append(dict(params=module.parameters(), lr=args.base_lr))
    for module in modules_new:
        params_list.append(
            dict(params=module.parameters(), lr=args.base_lr * 10))
    args.index_split = 5
    optimizer = torch.optim.SGD(params_list,
                                lr=args.base_lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    if args.sync_bn:
        model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

    if main_process():
        global logger, writer
        logger = get_logger()
        writer = SummaryWriter(args.save_path)
        logger.info(args)
        logger.info("=> creating model ...")
        logger.info("Classes: {}".format(args.classes))
        logger.info(model)
    else:
        logger = None
    if args.distributed:
        torch.cuda.set_device(gpu)
        args.batch_size = int(args.batch_size / ngpus_per_node)
        args.batch_size_val = int(args.batch_size_val / ngpus_per_node)
        args.workers = int(
            (args.workers + ngpus_per_node - 1) / ngpus_per_node)
        model = torch.nn.parallel.DistributedDataParallel(model.cuda(),
                                                          device_ids=[gpu])
    else:
        model = torch.nn.DataParallel(model.cuda())

    if args.weight:
        if os.path.isfile(args.weight):
            if main_process():
                logger.info("=> loading weight '{}'".format(args.weight))
            checkpoint = torch.load(args.weight)
            model.load_state_dict(checkpoint['state_dict'])
            if main_process():
                logger.info("=> loaded weight '{}'".format(args.weight))
        else:
            if main_process():
                logger.info("=> no weight found at '{}'".format(args.weight))

    if args.resume != 'none':
        if os.path.isfile(args.resume):
            if main_process():
                logger.info("=> loading checkpoint '{}'".format(args.resume))
            # checkpoint = torch.load(args.resume)
            checkpoint = torch.load(
                args.resume, map_location=lambda storage, loc: storage.cuda())
            args.start_epoch = checkpoint['epoch']
            # model.load_state_dict(checkpoint['state_dict'])
            # optimizer.load_state_dict(checkpoint['optimizer'])
            # print(checkpoint['optimizer'].keys())
            if args.if_remove_cls:
                if main_process():
                    logger.info(
                        '=====!!!!!!!===== Remove cls layer in resuming...')
                checkpoint['state_dict'] = {
                    x: checkpoint['state_dict'][x]
                    for x in checkpoint['state_dict'].keys()
                    if ('module.cls' not in x and 'module.aux' not in x)
                }
                # checkpoint['optimizer'] = {x: checkpoint['optimizer'][x] for x in checkpoint['optimizer'].keys() if ('module.cls' not in x and 'module.aux' not in x)}
                # if main_process():
                #     print('----', checkpoint['state_dict'].keys())
                #     print('----', checkpoint['optimizer'].keys())
                #     print('----1', checkpoint['optimizer']['state'].keys())

            model.load_state_dict(checkpoint['state_dict'], strict=False)
            if not args.if_remove_cls:
                optimizer.load_state_dict(checkpoint['optimizer'])
            if main_process():
                logger.info("=> loaded checkpoint '{}' (epoch {})".format(
                    args.resume, checkpoint['epoch']))
        else:
            if main_process():
                logger.info("=> no checkpoint found at '{}'".format(
                    args.resume))

    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]

    transform_list_train = []
    if args.resize:
        transform_list_train.append(
            transform.Resize((args.resize_h, args.resize_w)))
    transform_list_train += [
        transform.RandScale([args.scale_min, args.scale_max]),
        transform.RandRotate([args.rotate_min, args.rotate_max],
                             padding=mean,
                             ignore_label=args.ignore_label),
        transform.RandomGaussianBlur(),
        transform.RandomHorizontalFlip(),
        transform.Crop([args.train_h, args.train_w],
                       crop_type='rand',
                       padding=mean,
                       ignore_label=args.ignore_label),
        transform.ToTensor(),
        transform.Normalize(mean=mean, std=std)
    ]
    train_transform = transform.Compose(transform_list_train)
    train_data = dataset.SemData(split='val',
                                 data_root=args.data_root,
                                 data_list=args.train_list,
                                 transform=train_transform,
                                 logger=logger,
                                 is_master=main_process(),
                                 args=args)
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_data)
    else:
        train_sampler = None
    train_loader = torch.utils.data.DataLoader(train_data,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler,
                                               drop_last=True)

    if args.evaluate:
        transform_list_val = []
        if args.resize:
            transform_list_val.append(
                transform.Resize((args.resize_h, args.resize_w)))
        transform_list_val += [
            transform.Crop([args.train_h, args.train_w],
                           crop_type='center',
                           padding=mean,
                           ignore_label=args.ignore_label),
            transform.ToTensor(),
            transform.Normalize(mean=mean, std=std)
        ]
        val_transform = transform.Compose(transform_list_val)
        val_data = dataset.SemData(split='val',
                                   data_root=args.data_root,
                                   data_list=args.val_list,
                                   transform=val_transform,
                                   is_master=main_process(),
                                   args=args)
        args.read_image = val_data.read_image
        if args.distributed:
            val_sampler = torch.utils.data.distributed.DistributedSampler(
                val_data)
        else:
            val_sampler = None
        val_loader = torch.utils.data.DataLoader(
            val_data,
            batch_size=args.batch_size_val,
            shuffle=False,
            num_workers=args.workers,
            pin_memory=True,
            sampler=val_sampler)

    for epoch in range(args.start_epoch, args.epochs):
        epoch_log = epoch + 1

        # if args.evaluate and args.val_every_iter == -1:
        #     # logger.info('Validating.....')
        #     loss_val, mIoU_val, mAcc_val, allAcc_val, return_dict = validate(val_loader, model, criterion, args)
        #     if main_process():
        #         writer.add_scalar('VAL/loss_val', loss_val, epoch_log)
        #         writer.add_scalar('VAL/mIoU_val', mIoU_val, epoch_log)
        #         writer.add_scalar('VAL/mAcc_val', mAcc_val, epoch_log)
        #         writer.add_scalar('VAL/allAcc_val', allAcc_val, epoch_log)

        #         for sample_idx in range(len(return_dict['image_name_list'])):
        #             writer.add_text('VAL-image_name/%d'%sample_idx, return_dict['image_name_list'][sample_idx], epoch)
        #             writer.add_image('VAL-image/%d'%sample_idx, return_dict['im_list'][sample_idx], epoch, dataformats='HWC')
        #             writer.add_image('VAL-color_label/%d'%sample_idx, return_dict['color_GT_list'][sample_idx], epoch, dataformats='HWC')
        #             writer.add_image('VAL-color_pred/%d'%sample_idx, return_dict['color_pred_list'][sample_idx], epoch, dataformats='HWC')

        if args.distributed:
            train_sampler.set_epoch(epoch)
        loss_train, mIoU_train, mAcc_train, allAcc_train = train(
            train_loader, model, optimizer, epoch, epoch_log, val_loader,
            criterion)
        if main_process():
            writer.add_scalar('TRAIN/loss_train', loss_train, epoch_log)
            writer.add_scalar('TRAIN/mIoU_train', mIoU_train, epoch_log)
            writer.add_scalar('TRAIN/mAcc_train', mAcc_train, epoch_log)
            writer.add_scalar('TRAIN/allAcc_train', allAcc_train, epoch_log)
def main_worker(local_rank, ngpus_per_node, argss):
    global args
    args = argss

    dist.init_process_group(backend=args.dist_backend)

    teacher_model = None
    if args.teacher_model_path:
        teacher_model = PSPNet(layers=args.teacher_layers, classes=args.classes, zoom_factor=args.zoom_factor)
        kd_path = 'alpha_' + str(args.alpha) + '_Temp_' + str(args.temperature)
        args.save_path = os.path.join(args.save_path, kd_path)
        if not os.path.exists(args.save_path):
            os.mkdir(args.save_path)
    if args.arch == 'psp':
        model = PSPNet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor)
        modules_ori = [model.layer0, model.layer1, model.layer2, model.layer3, model.layer4]
        modules_new = [model.ppm, model.cls, model.aux]
    elif args.arch == 'bise_v1':
        model = BiseNet(num_classes=args.classes)
        modules_ori = [model.sp, model.cp]
        modules_new = [model.ffm, model.conv_out, model.conv_out16, model.conv_out32]
    params_list = []
    for module in modules_ori:
        params_list.append(dict(params=module.parameters(), lr=args.base_lr))
    for module in modules_new:
        params_list.append(dict(params=module.parameters(), lr=args.base_lr * 10))
    args.index_split = 5
    optimizer = torch.optim.SGD(params_list, lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay)
    if args.sync_bn:
        model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if teacher_model is not None:
            teacher_model = nn.SyncBatchNorm.convert_sync_batchnorm(teacher_model)

    if main_process():
        global logger, writer
        logger = get_logger()
        writer = SummaryWriter(args.save_path) # tensorboardX
        logger.info(args)
        logger.info("=> creating model ...")
        logger.info("Classes: {}".format(args.classes))
        logger.info(model)
        if teacher_model is not None:
            logger.info(teacher_model)
    if args.distributed:
        torch.cuda.set_device(local_rank)
        args.batch_size = int(args.batch_size / ngpus_per_node)
        args.batch_size_val = int(args.batch_size_val / ngpus_per_node)
        args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
        model = torch.nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[local_rank])
        if teacher_model is not None:
            teacher_model = torch.nn.parallel.DistributedDataParallel(teacher_model.cuda(), device_ids=[local_rank])

    else:
        model = torch.nn.DataParallel(model.cuda())
        if teacher_model is not None:
            teacher_model = torch.nn.DataParallel(teacher_model.cuda())
    
    if teacher_model is not None:
        checkpoint = torch.load(args.teacher_model_path, map_location=lambda storage, loc: storage.cuda())
        teacher_model.load_state_dict(checkpoint['state_dict'], strict=False)
        print("=> loading teacher checkpoint '{}'".format(args.teacher_model_path))
    
    criterion = nn.CrossEntropyLoss(ignore_index=args.ignore_label).cuda(local_rank)
    kd_criterion = None
    if teacher_model is not None:
        kd_criterion = KDLoss(ignore_index=args.ignore_label).cuda(local_rank)
            
    if args.weight:
        if os.path.isfile(args.weight):
            if main_process():
                logger.info("=> loading weight: '{}'".format(args.weight))
            checkpoint = torch.load(args.weight)
            model.load_state_dict(checkpoint['state_dict'])
            if main_process():
                logger.info("=> loaded weight '{}'".format(args.weight))
        else:
            if main_process():
                logger.info("=> mp weight found at '{}'".format(args.weight))
    
    best_mIoU_val = 0.0
    if args.resume:
        if os.path.isfile(args.resume):
            if main_process():
                logger.info("=> loading checkpoint '{}'".format(args.resume))
            # Load all tensors onto GPU
            checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage.cuda())
            args.start_epoch = checkpoint['epoch']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            best_mIoU_val = checkpoint['best_mIoU_val']
            if main_process():
                logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['point']))
        else:
            if main_process():
                logger.info("=> no checkpoint found at '{}'".format(args.resume))    
        
    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]
        
    train_transform = transform.Compose([
        transform.RandScale([args.scale_min, args.scale_max]),
        transform.RandRotate([args.rotate_min, args.rotate_max], padding=mean, ignore_label=args.ignore_label),
        transform.RandomGaussianBlur(),
        transform.RandomHorizontalFlip(),
        transform.Crop([args.train_h, args.train_w], crop_type='rand', padding=mean, ignore_label=args.ignore_label),
        transform.ToTensor(),
        transform.Normalize(mean=mean, std=std)])

    train_data = dataset.SemData(split='train', data_root=args.data_root, data_list=args.train_list, transform=train_transform)
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
    else:
        train_sampler = None
    train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True)
    if args.evaluate:
        val_transform = transform.Compose([
            transform.Crop([args.train_h, args.train_w], crop_type='center', padding=mean, ignore_label=args.ignore_label),
            transform.ToTensor(),
            transform.Normalize(mean=mean, std=std)])
        val_data = dataset.SemData(split='val', data_root=args.data_root, data_list=args.val_list, transform=val_transform)
        if args.distributed:
            val_sampler = torch.utils.data.distributed.DistributedSampler(val_data)
        else:
            val_sampler = None
        val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batch_size_val, shuffle=False, num_workers=args.workers, pin_memory=True, sampler=val_sampler)

    for epoch in range(args.start_epoch, args.epochs):
        epoch_log = epoch + 1
        if args.distributed:
            # Use .set_epoch() method to reshuffle the dataset partition at every iteration
            train_sampler.set_epoch(epoch)
        loss_train, mIoU_train, mAcc_train, allAcc_train = train(local_rank, train_loader, model, teacher_model, criterion, kd_criterion, optimizer, epoch)
        if main_process():
            writer.add_scalar('loss_train', loss_train, epoch_log)
            writer.add_scalar('mIoU_train', mIoU_train, epoch_log)
            writer.add_scalar('mAcc_train', mAcc_train, epoch_log)
            writer.add_scalar('allAcc_train', allAcc_train, epoch_log)
        
        is_best = False
        if args.evaluate:
            loss_val, mIoU_val, mAcc_val, allAcc_val = validate(local_rank, val_loader, model, criterion)
            if main_process():
                writer.add_scalar('loss_val', loss_val, epoch_log)
                writer.add_scalar('mIoU_val', mIoU_val, epoch_log)
                writer.add_scalar('mAcc_val', mAcc_val, epoch_log)
                writer.add_scalar('allAcc_val', allAcc_val, epoch_log)

                if best_mIoU_val < mIoU_val:
                    is_best = True
                    best_mIoU_val = mIoU_val
                    logger.info('==>The best val mIoU: %.3f' % (best_mIoU_val))

        
        if (epoch_log % args.save_freq == 0) and main_process():
            save_checkpoint(
                {
                    'epoch': epoch_log, 
                    'state_dict': model.state_dict(), 
                    'optimizer': optimizer.state_dict(),
                    'best_mIoU_val': best_mIoU_val
                }, 
                is_best, 
                args.save_path
            )
            if is_best:
                logger.info('Saving checkpoint to:' + args.save_path + '/best.pth with mIoU: ' + str(best_mIoU_val) )
            else:
                logger.info('Saving checkpoint to:' + args.save_path + '/last.pth with mIoU: ' + str(mIoU_val) )

    if main_process():  
        writer.close() # it must close the writer, otherwise it will appear the EOFError!
        logger.info('==>Training done!\nBest mIoU: %.3f' % (best_mIoU_val))
Example #13
0
def main():
    global args, logger
    args = get_parser()
    if args.test_in_nyu_label_space:
        args.colors_path = 'nyu/nyu_colors.txt'
        args.names_path = 'nyu/nyu_names.txt'

    if args.if_cluster:
        args.data_root = args.data_root_cluster
        args.project_path = args.project_path_cluster
        args.data_config_path = 'data'
    for key in ['train_list', 'val_list', 'test_list', 'colors_path', 'names_path']:
        args[key] = os.path.join(args.data_config_path, args[key])
    for key in ['save_path', 'model_path', 'save_folder']:
        args[key] = os.path.join(args.project_path, args[key])
    # for key in ['save_path', 'model_path', 'save_folder']:
    #     args[key] = args[key] % args.exp_name

    check(args)
    logger = get_logger()
    os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.test_gpu)
    logger.info(args)
    logger.info("=> creating model ...")
    logger.info("Classes: {}".format(args.classes))

    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]

    gray_folder = os.path.join(args.save_folder, 'gray')
    color_folder = os.path.join(args.save_folder, 'color')

    transform_list_test = []
    if args.resize:
        transform_list_test.append(transform.Resize((args.resize_h_test, args.resize_w_test)))
    transform_list_test += [
        transform.Crop([args.test_h, args.test_w], crop_type='center', padding=mean, ignore_label=args.ignore_label),
        transform.ToTensor(), 
        transform.Normalize(mean=mean, std=std)
    ]
    test_transform = transform.Compose(transform_list_test)
    test_data = dataset.SemData(split=args.split, data_root=args.data_root, data_list=args.test_list, transform=test_transform, is_master=True, args=args)
    # test_data = dataset.SemData(split='val', data_root=args.data_root, data_list=args.val_list, transform=test_transform, is_master=True, args=args)
    index_start = args.index_start
    if args.index_step == 0:
        index_end = len(test_data.data_list)
    else:
        index_end = min(index_start + args.index_step, len(test_data.data_list))
    test_data.data_list = test_data.data_list[index_start:index_end]
    test_loader = torch.utils.data.DataLoader(test_data, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True)
    colors = np.loadtxt(args.colors_path).astype('uint8')
    names = [line.rstrip('\n') for line in open(args.names_path)]

    args.read_image = test_data.read_image


    if not args.has_prediction:
        if args.arch == 'psp':
            from model.pspnet import PSPNet
            model = PSPNet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, pretrained=False)
        elif args.arch == 'psa':
            from model.psanet import PSANet
            model = PSANet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, compact=args.compact,
                           shrink_factor=args.shrink_factor, mask_h=args.mask_h, mask_w=args.mask_w,
                           normalization_factor=args.normalization_factor, psa_softmax=args.psa_softmax, pretrained=False)
        logger.info(model)
        model = torch.nn.DataParallel(model).cuda()
        cudnn.benchmark = True
        if os.path.isfile(args.model_path):
            logger.info("=> loading checkpoint '{}'".format(args.model_path))
            checkpoint = torch.load(args.model_path)
            model.load_state_dict(checkpoint['state_dict'], strict=True)
            logger.info("=> loaded checkpoint '{}'".format(args.model_path))
        else:
            raise RuntimeError("=> no checkpoint found at '{}'".format(args.model_path))
        pred_path_list, target_path_list = test(test_loader, test_data.data_list, model, args.classes, mean, std, args.base_size, args.test_h, args.test_w, args.scales, gray_folder, color_folder, colors)
    if args.split != 'test' or (args.split == 'test' and args.test_has_gt):
        cal_acc(test_data.data_list, gray_folder, args.classes, names, pred_path_list=pred_path_list, target_path_list=target_path_list)
Example #14
0
def main():
    global args, logger
    args = get_parser()
    check(args)
    logger = get_logger()
    os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.test_gpu)
    logger.info(args)
    logger.info("=> creating model ...")
    logger.info("Classes: {}".format(args.classes))

    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]

    test_h = int(args.base_h * args.scale + 1)
    test_w = int(args.base_w * args.scale + 1)
    
    if args.teacher_model_path:
        kd_path = 'alpha_' + str(args.alpha) + '_Temp_' + str(args.temperature)
        kd_save = kd_path + '/val/ss'
        args.save_folder = os.path.join(args.save_folder, kd_save)
        args.save_path = os.path.join(args.save_path, kd_path)
        args.model_path = os.path.join(args.save_path, args.model_path)

    gray_folder = os.path.join(args.save_folder, 'gray')
    color_folder = os.path.join(args.save_folder, 'color')

    test_transform = transform.Compose([transform.ToTensor()])
    test_data = dataset.SemData(split='test', data_root=args.data_root, data_list=args.test_list, transform=test_transform)
    index_start = args.index_start
    if args.index_step == 0:
        index_end = len(test_data.data_list)
    else:
        index_end = min(index_start + args.index_step, len(test_data.data_list))
    test_data.data_list = test_data.data_list[index_start:index_end]
    test_loader = torch.utils.data.DataLoader(test_data, batch_size=1, shuffle=False, num_workers=4, pin_memory=True)
    colors = np.loadtxt(args.colors_path).astype('uint8')
    names = [line.rstrip('\n') for line in open(args.names_path)]

    if not args.has_prediction:
        if args.arch == 'psp':
            from model.pspnet import PSPNet
            model = PSPNet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor)
        elif args.arch == 'nonlocal':
            from model.nonlocal_net import Nonlocal
            model = Nonlocal(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor)
        elif args.arch == 'sanet':
            from model.sanet import SANet
            model = SANet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor)
        elif args.arch == 'bise_v1':
            from model.bisenet_v1 import BiseNet
            model = BiseNet(layers=args.layers, classes=args.classes, with_sp=args.with_sp)
        elif args.arch == 'fanet':
            from model.fanet import FANet
            model = FANet(layers=args.layers, classes=args.classes)
        logger.info(model)
        model = torch.nn.DataParallel(model).cuda()
        cudnn.benchmark = True
        if os.path.isfile(args.model_path):
            logger.info("=> loading checkpoint '{}'".format(args.model_path))
            checkpoint = torch.load(args.model_path)
            model.load_state_dict(checkpoint['state_dict'])
            logger.info("=> loaded checkpoint '{}'".format(args.model_path))
        else:
            raise RuntimeError("=> no checkpoint found at '{}'".format(args.model_path))
        test(test_loader, test_data.data_list, model, args.classes, mean, std, args.base_size, test_h, test_w, args.scales, gray_folder, color_folder, colors)
    if args.split != 'test':
        cal_acc(test_data.data_list, gray_folder, args.classes, names)
Example #15
0
def main():
    models = {
        'resnet101':
        lambda: PSPNet(n_classes=21,
                       sizes=(1, 2, 3, 6),
                       psp_size=2048,
                       deep_features_size=1024,
                       backend='resnet101')
    }

    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    cudnn.enabled = True

    # create network
    model = models['resnet101']()

    # load pretrained parameters
    if args.restore_from[:4] == 'http':
        #saved_state_dict = torch.load(args.restore_from)
        saved_state_dict = model_zoo.load_url(args.restore_from)
    else:
        saved_state_dict = torch.load(args.restore_from)

    # only copy the params that exist in current model (caffe-like)
    new_params = model.state_dict().copy()
    for name, param in new_params.items():
        print(name)
        if name in saved_state_dict and param.size(
        ) == saved_state_dict[name].size():
            new_params[name].copy_(saved_state_dict[name])
            print('copy {}'.format(name))
    model.load_state_dict(new_params)

    model.train()
    model = nn.DataParallel(model)
    model.cuda()

    cudnn.benchmark = True

    # init D
    # model_D = FCDiscriminator(num_classes=args.num_classes)
    # if args.restore_from_D is not None:
    #     model_D.load_state_dict(torch.load(args.restore_from_D))
    #
    # model_D = nn.DataParallel(model_D)
    # model_D.train()
    # model_D.cuda()

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    train_dataset = VOCDataSet(args.data_dir,
                               args.data_list,
                               crop_size=input_size,
                               scale=args.random_scale,
                               mirror=args.random_mirror,
                               mean=IMG_MEAN)

    train_dataset_size = len(train_dataset)

    train_gt_dataset = VOCGTDataSet(args.data_dir,
                                    args.data_list,
                                    crop_size=input_size,
                                    scale=args.random_scale,
                                    mirror=args.random_mirror,
                                    mean=IMG_MEAN)

    if args.partial_data == 0:
        trainloader = data.DataLoader(train_dataset,
                                      batch_size=args.batch_size,
                                      shuffle=True,
                                      num_workers=5,
                                      pin_memory=True)

        trainloader_gt = data.DataLoader(train_gt_dataset,
                                         batch_size=args.batch_size,
                                         shuffle=True,
                                         num_workers=5,
                                         pin_memory=True)
    else:
        #sample partial data
        partial_size = int(args.partial_data * train_dataset_size)

    trainloader_iter = enumerate(trainloader)
    trainloader_gt_iter = enumerate(trainloader_gt)

    # implement model.optim_parameters(args) to handle different models' lr setting

    # optimizer for segmentation network
    optimizer = optim.SGD(model.parameters(),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    # optimizer for discriminator network
    # optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9,0.99))
    # optimizer_D.zero_grad()

    # loss/ bilinear upsampling
    bce_loss = BCEWithLogitsLoss2d()
    interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(input_size[1], input_size[0]),
                             mode='bilinear')

    # labels for adversarial training
    pred_label = 0
    gt_label = 1

    seg_criterion = NLL2d().cuda()
    cls_criterion = nn.BCEWithLogitsLoss(weight=None)

    for i_iter in range(args.num_steps):

        loss_seg_value = 0
        loss_adv_pred_value = 0
        loss_D_value = 0
        loss_semi_value = 0
        loss_semi_adv_value = 0

        optimizer.zero_grad()
        adjust_learning_rate(optimizer, i_iter)
        # optimizer_D.zero_grad()
        # adjust_learning_rate_D(optimizer_D, i_iter)

        for sub_i in range(args.iter_size):

            # train G

            # train with source

            try:
                _, batch = trainloader_iter.next()
            except:
                trainloader_iter = enumerate(trainloader)
                _, batch = trainloader_iter.next()

            images, labels, _, _, y_cls = batch
            labels = Variable(labels.long()).cuda()

            y_cls = Variable(y_cls.float()).cuda()

            images = Variable(images).cuda()
            #ignore_mask = (labels.numpy() == 255)
            out, out_cls = model(images)

            seg_loss, cls_loss = seg_criterion(out, labels), cls_criterion(
                out_cls, y_cls)

            loss = seg_loss + cls_loss

            # proper normalization
            loss = loss / args.iter_size
            loss.backward()
            loss_seg_value += seg_loss.data.cpu().numpy()[0] / args.iter_size

        optimizer.step()
        # optimizer_D.step()

        print('exp = {}'.format(args.snapshot_dir))
        print(
            'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}'
            .format(i_iter, args.num_steps, loss_seg_value,
                    loss_adv_pred_value, loss_D_value, loss_semi_value,
                    loss_semi_adv_value))

        if i_iter >= args.num_steps - 1:
            print('save model ...')
            torch.save(
                model.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' +
                    os.path.abspath(__file__).split('/')[-1].split('.')[0] +
                    '_' + str(args.num_steps) + '.pth'))
            #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(args.num_steps)+'_D.pth'))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            torch.save(
                model.state_dict(),
                osp.join(
                    args.snapshot_dir, 'VOC_' +
                    os.path.abspath(__file__).split('/')[-1].split('.')[0] +
                    '_' + str(i_iter) + '.pth'))
            #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(i_iter)+'_D.pth'))

    end = timeit.default_timer()
    print(end - start, 'seconds')
Example #16
0
#-*-coding:utf-8-*-
import torch
import torch.nn as nn
from model.pspnet import PSPNet
import torch.nn.functional as F
from torchsummary import summary
import numpy as np

psp_models = {
    'resnet18':
    lambda: PSPNet(sizes=(1, 2, 3, 6),
                   psp_size=512,
                   deep_features_size=256,
                   backend='resnet18')
}


# 之前的pspnet模型,用于语义分割
class ModifiedResnet(nn.Module):
    def __init__(self):
        super(ModifiedResnet, self).__init__()
        self.model = psp_models['resnet18'.lower()]()
        # self.model = nn.DataParallel(self.model)                                # 数据并行,用于多GPU的调用

    def forward(self, x):
        return self.model(x)


class PoseNetFeat(nn.Module):
    def __init__(self, num_points):
        '''
    def test_train(self):
        dataset = SegmentationDummyDataset(batch_size=32)
        pspnet = PSPNet(epochs=1, dataset=dataset, frontend_name='resnet101')
        history = pspnet.train()

        ok_('loss' in history)
Example #18
0
def main_worker(gpu, ngpus_per_node, argss):
    global args
    args = argss
    if args.sync_bn:
        if args.multiprocessing_distributed:
            BatchNorm = apex.parallel.SyncBatchNorm
        else:
            from lib.sync_bn.modules import BatchNorm2d
            BatchNorm = BatchNorm2d
    else:
        BatchNorm = nn.BatchNorm2d
    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank)

    criterion = nn.CrossEntropyLoss(ignore_index=args.ignore_label)
    if args.arch == 'psp':
        from model.pspnet import PSPNet
        model = PSPNet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, criterion=criterion, BatchNorm=BatchNorm)
        modules_ori = [model.layer0, model.layer1, model.layer2, model.layer3, model.layer4]
        modules_new = [model.ppm, model.cls, model.aux]
    elif args.arch == 'psa':
        from model.psanet import PSANet
        model = PSANet(layers=args.layers, classes=args.classes, zoom_factor=args.zoom_factor, psa_type=args.psa_type,
                       compact=args.compact, shrink_factor=args.shrink_factor, mask_h=args.mask_h, mask_w=args.mask_w,
                       normalization_factor=args.normalization_factor, psa_softmax=args.psa_softmax,
                       criterion=criterion,
                       BatchNorm=BatchNorm)
        modules_ori = [model.layer0, model.layer1, model.layer2, model.layer3, model.layer4]
        modules_new = [model.psa, model.cls, model.aux]
    params_list = []
    for module in modules_ori:
        params_list.append(dict(params=module.parameters(), lr=args.base_lr))
    for module in modules_new:
        params_list.append(dict(params=module.parameters(), lr=args.base_lr * 10))
    args.index_split = 5
    optimizer = torch.optim.SGD(params_list, lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay)

    if main_process():
        global logger, writer
        logger = get_logger()
        writer = SummaryWriter(args.save_path)
        logger.info(args)
        logger.info("=> creating model ...")
        logger.info("Classes: {}".format(args.classes))
        logger.info(model)
    if args.distributed:
        torch.cuda.set_device(gpu)
        args.batch_size = int(args.batch_size / ngpus_per_node)
        args.batch_size_val = int(args.batch_size_val / ngpus_per_node)
        args.workers = int(args.workers / ngpus_per_node)
        if args.use_apex:
            model, optimizer = apex.amp.initialize(model.cuda(), optimizer, opt_level=args.opt_level, keep_batchnorm_fp32=args.keep_batchnorm_fp32, loss_scale=args.loss_scale)
            model = apex.parallel.DistributedDataParallel(model)
        else:
            model = torch.nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[gpu])

    else:
        model = torch.nn.DataParallel(model.cuda())

    if args.weight:
        if os.path.isfile(args.weight):
            if main_process():
                logger.info("=> loading weight '{}'".format(args.weight))
            checkpoint = torch.load(args.weight)
            model.load_state_dict(checkpoint['state_dict'])
            if main_process():
                logger.info("=> loaded weight '{}'".format(args.weight))
        else:
            if main_process():
                logger.info("=> no weight found at '{}'".format(args.weight))

    if args.resume:
        if os.path.isfile(args.resume):
            if main_process():
                logger.info("=> loading checkpoint '{}'".format(args.resume))
            # checkpoint = torch.load(args.resume)
            checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage.cuda())
            args.start_epoch = checkpoint['epoch']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            if main_process():
                logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
        else:
            if main_process():
                logger.info("=> no checkpoint found at '{}'".format(args.resume))

    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]

    train_transform = transform.Compose([
        transform.RandScale([args.scale_min, args.scale_max]),
        transform.RandRotate([args.rotate_min, args.rotate_max], padding=mean, ignore_label=args.ignore_label),
        transform.RandomGaussianBlur(),
        transform.RandomHorizontalFlip(),
        transform.Crop([args.train_h, args.train_w], crop_type='rand', padding=mean, ignore_label=args.ignore_label),
        transform.ToTensor(),
        transform.Normalize(mean=mean, std=std)])
    train_data = dataset.SemData(split='train', data_root=args.data_root, data_list=args.train_list, transform=train_transform)
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
    else:
        train_sampler = None
    train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True)
    if args.evaluate:
        val_transform = transform.Compose([
            transform.Crop([args.train_h, args.train_w], crop_type='center', padding=mean, ignore_label=args.ignore_label),
            transform.ToTensor(),
            transform.Normalize(mean=mean, std=std)])
        val_data = dataset.SemData(split='val', data_root=args.data_root, data_list=args.val_list, transform=val_transform)
        if args.distributed:
            val_sampler = torch.utils.data.distributed.DistributedSampler(val_data)
        else:
            val_sampler = None
        val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batch_size_val, shuffle=False, num_workers=args.workers, pin_memory=True, sampler=val_sampler)

    for epoch in range(args.start_epoch, args.epochs):
        epoch_log = epoch + 1
        if args.distributed:
            train_sampler.set_epoch(epoch)
        loss_train, mIoU_train, mAcc_train, allAcc_train = train(train_loader, model, optimizer, epoch)
        if main_process():
            writer.add_scalar('loss_train', loss_train, epoch_log)
            writer.add_scalar('mIoU_train', mIoU_train, epoch_log)
            writer.add_scalar('mAcc_train', mAcc_train, epoch_log)
            writer.add_scalar('allAcc_train', allAcc_train, epoch_log)

        if (epoch_log % args.save_freq == 0) and main_process():
            filename = args.save_path + '/train_epoch_' + str(epoch_log) + '.pth'
            logger.info('Saving checkpoint to: ' + filename)
            torch.save({'epoch': epoch_log, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()}, filename)
            if epoch_log / args.save_freq > 2:
                deletename = args.save_path + '/train_epoch_' + str(epoch_log - args.save_freq * 2) + '.pth'
                os.remove(deletename)
        if args.evaluate:
            loss_val, mIoU_val, mAcc_val, allAcc_val = validate(val_loader, model, criterion)
            if main_process():
                writer.add_scalar('loss_val', loss_val, epoch_log)
                writer.add_scalar('mIoU_val', mIoU_val, epoch_log)
                writer.add_scalar('mAcc_val', mAcc_val, epoch_log)
                writer.add_scalar('allAcc_val', allAcc_val, epoch_log)
 def test_init(self):
     dataset = SegmentationDummyDataset()
     PSPNet(dataset=dataset, frontend_name='resnet101')
Example #20
0
def main():
    global args
    criterion = nn.CrossEntropyLoss(ignore_index=args.ignore_label)
    model = PSPNet(layers=args.layers,
                   classes=args.classes,
                   zoom_factor=args.zoom_factor,
                   criterion=criterion,
                   pretrained=args.pretrained,
                   naive_ppm=args.naive_ppm)

    # set diffrent learning rate on different part of models
    modules_ori = [
        model.layer0, model.layer1, model.layer2, model.layer3, model.layer4
    ]
    modules_new = [model.ppm, model.cls_head, model.aux_head]
    params_list = []
    for module in modules_ori:
        params_list.append(dict(params=module.parameters(), lr=args.base_lr))
    for module in modules_new:
        params_list.append(
            dict(params=module.parameters(), lr=args.base_lr * 10))
    args.index_split = 5
    optimizer = torch.optim.SGD(params_list,
                                lr=args.base_lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    global logger, writer
    logger = get_logger()
    writer = SummaryWriter(args.save_path)
    logger.info(args)
    logger.info("=> creating model ...")
    logger.info("Classes: {}".format(args.classes))
    logger.info(model)
    model = model.cuda()
    model = torch.nn.DataParallel(model).cuda()

    if args.weight:
        if os.path.isfile(args.weight):
            logger.info("=> loading weight '{}'".format(args.weight))
            checkpoint = torch.load(args.weight)
            model.load_state_dict(checkpoint['state_dict'])
            logger.info("=> loaded weight '{}'".format(args.weight))
        else:
            logger.info("=> no weight found at '{}'".format(args.weight))

    if args.resume:
        if os.path.isfile(args.resume):
            logger.info("=> loading checkpoint '{}'".format(args.resume))
            # checkpoint = torch.load(args.resume)
            checkpoint = torch.load(
                args.resume, map_location=lambda storage, loc: storage.cuda())
            args.start_epoch = checkpoint['epoch']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            logger.info("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            logger.info("=> no checkpoint found at '{}'".format(args.resume))

    # image pre-processing and augmentation
    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]
    train_transform = transform.Compose([
        transform.Resize((args.train_h, args.train_w)),
        # augmentation
        transform.RandScale([args.scale_min, args.scale_max]),
        transform.RandRotate([args.rotate_min, args.rotate_max],
                             padding=mean,
                             ignore_label=args.ignore_label),
        transform.RandomGaussianBlur(),
        transform.RandomHorizontalFlip(),
        transform.Crop([args.train_h, args.train_w],
                       crop_type='rand',
                       padding=mean,
                       ignore_label=args.ignore_label),
        transform.ToTensor(),
        transform.Normalize(mean=mean, std=std)
    ])

    # initialize dataloader
    train_data = dataset.SemData(split='trainval', transform=train_transform)
    train_sampler = None
    train_loader = torch.utils.data.DataLoader(train_data,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler,
                                               drop_last=True)
    if args.evaluate:
        val_transform = transform.Compose([
            transform.Crop([args.train_h, args.train_w],
                           crop_type='center',
                           padding=mean,
                           ignore_label=args.ignore_label),
            transform.ToTensor(),
            transform.Normalize(mean=mean, std=std)
        ])
        val_data = dataset.SemData(split='test', transform=val_transform)
        val_sampler = None
        val_loader = torch.utils.data.DataLoader(
            val_data,
            batch_size=args.batch_size_val,
            shuffle=False,
            num_workers=args.workers,
            pin_memory=True,
            sampler=val_sampler)

    # start training
    logger.info('Starting training.')
    for epoch in range(args.start_epoch, args.epochs):
        epoch_log = epoch + 1
        loss_train, mIoU_train, mAcc_train, allAcc_train = train(
            train_loader, model, optimizer, epoch)
        writer.add_scalar('loss/train', loss_train, epoch_log)
        writer.add_scalar('mIoU/train', mIoU_train, epoch_log)
        writer.add_scalar('mAcc/train', mAcc_train, epoch_log)
        writer.add_scalar('allAcc/train', allAcc_train, epoch_log)

        if args.evaluate:
            loss_val, mIoU_val, mAcc_val, allAcc_val = validate(
                val_loader, model, criterion)
            writer.add_scalar('loss/val', loss_val, epoch_log)
            writer.add_scalar('mIoU/val', mIoU_val, epoch_log)
            writer.add_scalar('mAcc/val', mAcc_val, epoch_log)
            writer.add_scalar('allAcc/val', allAcc_val, epoch_log)

        if (epoch_log % args.save_freq == 0):
            filename = args.save_path + '/train_epoch_' + str(
                epoch_log) + '.pth'
            logger.info('Saving checkpoint to: ' + filename)
            torch.save(
                {
                    'epoch': epoch_log,
                    'state_dict': model.module.state_dict(),
                    'optimizer': optimizer.state_dict()
                }, filename)